Difference between revisions of "Talk:Scattering"

From GISAXS
Jump to: navigation, search
(cont)
(cont)
Line 75: Line 75:
 
     & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
 
     & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
 
     & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
 
     & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
     & = ? \\
+
     & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2}  \\
     & = ? \\
+
     & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2}  \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\

Revision as of 09:06, 30 December 2015

TSAXS 3D

The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:

The momentum transfer components are:

Check

As a check of these results, consider:

Where we used:

And, we further note that:

cont

Continuing: