|
|
Line 22: |
Line 22: |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | | + | The total [[momentum transfer]] is: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right) \\ |
| + | & = \frac{2 \pi}{\lambda} \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\ |
| + | & = \frac{2 \pi}{\lambda} \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\ |
| + | & = \frac{2 \pi}{\lambda}\sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } |
| + | \end{alignat} |
| + | </math> |
| The [[momentum transfer]] components are: | | The [[momentum transfer]] components are: |
| :<math> | | :<math> |
Revision as of 09:37, 30 December 2015
The q-vector in fact has three components:
Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by . Also note that the full scattering angle is:
The total momentum transfer is:
The momentum transfer components are:
Check
As a check of these results, consider:
Where we used:
And, we further note that:
cont
Continuing: