Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(cont)
Line 98: Line 98:
 
</math>
 
</math>
  
====cont====
 
 
Continuing:
 
Continuing:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\frac{q^2}{k^2}
+
\left( \frac{q}{k} \right)^2
 
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\
 
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\
 
     & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
 
     & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
Line 110: Line 109:
 
     & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2}  \\
 
     & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2}  \\
 
     & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2}  \\
 
     & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2}  \\
    & = \frac{ (x^2 + z^2) } {(d^2 + x^2 + z^2)} \frac{(d^2 + x^2 + z^2)}{ (x^2 + z^2) } \frac{d^6 + d^2(1+x^2+2z^2) + x^2 -2d^3\sqrt{d^2(1+z^2)+x^2}}{d^2(1+z^2)+x^2}  \\
 
 
     & = ? \\
 
     & = ? \\
    & = \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} \\
 
\frac{q}{k} & = \sqrt{ \frac{ x^2 + z^2 } {d^2 + x^2 + z^2} } \\
 
    & = \frac{ \sqrt{x^2 + z^2} } {\sqrt{d^2 + x^2 + z^2 }} \\
 
    & = \frac{ \left[ \sqrt{x^2 + z^2}/d \right ] } {\sqrt{1 + \left[ \sqrt{x^2 + z^2}/d \right ]^2 }} \\
 
    & = \sin \left( \arctan\left [ \frac{\sqrt{x^2 + z^2}}{d} \right ] \right) \\
 
q & = \frac{2 \pi}{\lambda} \sin \left( 2 \theta_s \right)
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 10:34, 30 December 2015

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is:

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

Components

The momentum transfer components are:

Check

As a check of these results, consider:

Where we used:

And, we further note that:

Continuing: