Difference between revisions of "Talk:Lattice:Hexagonal diamond"
KevinYager (talk | contribs) (Created page with "====Absolute==== * <math> 4 \, \mathrm{bottom\,\, layer}: \, \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = \frac{1}{2}</math> ** <math>\left(0,0,0\right),(a,0,0),\...") |
KevinYager (talk | contribs) |
||
Line 21: | Line 21: | ||
** <math>\left(0,0,0\right),\left(\frac{2\sqrt{6}}{3}l,0,0 \right),\left(\frac{\sqrt{6}}{3}l,\sqrt{2}l,0\right),\left(\sqrt{6}l,\sqrt{2}l,0\right)</math> | ** <math>\left(0,0,0\right),\left(\frac{2\sqrt{6}}{3}l,0,0 \right),\left(\frac{\sqrt{6}}{3}l,\sqrt{2}l,0\right),\left(\sqrt{6}l,\sqrt{2}l,0\right)</math> | ||
* <math> 4 \, \mathrm{mid\,\, layer}: \, \frac{1}{6} + \frac{1}{3} + \frac{1}{6} + \frac{1}{3} = 1</math> | * <math> 4 \, \mathrm{mid\,\, layer}: \, \frac{1}{6} + \frac{1}{3} + \frac{1}{6} + \frac{1}{3} = 1</math> | ||
− | ** <math>\left(0,0,\frac{ | + | ** <math>\left(0,0,\frac{5}{3}l\right),\left(\frac{2\sqrt{6}}{3}l,0,\frac{5}{3}l \right),\left(\frac{\sqrt{6}}{3}l,\sqrt{2}l,\frac{5}{3}l\right),\left(\sqrt{6}l,\sqrt{2}l,\frac{5}{3}l\right)</math> |
* <math> 2 \, \mathrm{internal\,\, strut}: \, 1 + 1 = 2</math> | * <math> 2 \, \mathrm{internal\,\, strut}: \, 1 + 1 = 2</math> | ||
** <math>\left(\frac{a}{2},\frac{b}{2\sqrt{3}},\frac{c}{8}\right),\left(\frac{a}{2},\frac{b}{2\sqrt{3}},\frac{4c}{8}\right)</math> | ** <math>\left(\frac{a}{2},\frac{b}{2\sqrt{3}},\frac{c}{8}\right),\left(\frac{a}{2},\frac{b}{2\sqrt{3}},\frac{4c}{8}\right)</math> | ||
* <math> 4 \, \mathrm{top\,\, layer}: \, \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = \frac{1}{2}</math> | * <math> 4 \, \mathrm{top\,\, layer}: \, \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = \frac{1}{2}</math> | ||
** <math>\left(0,0,\frac{8}{3}l\right),\left(\frac{2\sqrt{6}}{3}l,0,\frac{8}{3}l \right),\left(\frac{\sqrt{6}}{3}l,\sqrt{2}l,\frac{8}{3}l\right),\left(\sqrt{6}l,\sqrt{2}l,\frac{8}{3}l\right)</math> | ** <math>\left(0,0,\frac{8}{3}l\right),\left(\frac{2\sqrt{6}}{3}l,0,\frac{8}{3}l \right),\left(\frac{\sqrt{6}}{3}l,\sqrt{2}l,\frac{8}{3}l\right),\left(\sqrt{6}l,\sqrt{2}l,\frac{8}{3}l\right)</math> |
Revision as of 10:03, 9 January 2018
Absolute
Distances
For a particle-particle bond-length of :