Debye-Waller factor

From GISAXS
Revision as of 21:52, 3 June 2014 by 68.194.136.6 (talk)
Jump to: navigation, search

The Debye-Waller factor is a term (in scattering equations) which accounts for how thermal fluctuations extinguish scattering intensity (especially high-q peaks). This scattering intensity then appears as diffuse scattering. Conceptually, thermal fluctuations create disorder, because the atoms/particles oscillate about their equilibrium positions and thus the lattice is never (instantaneously) perfect.

Mathematical form

For a lattice-size a, the constituent entities (atoms, particles, etc.) will oscillate about their equilibrium positions with an rms width , attenuating structural peaks like:

Where is the root-mean-square displacement of the lattice-spacing a (such that the spacing at time t is ), and is the relative displacement.

Thus, the intensity of the structural peaks is multiplied by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(q)} , which attenuates the higher-order (high-q) peaks, and redistributes this intensity into a diffuse scattering term, which appears in the structure factor () as:

And thus appears in the overall intensity as:

where is the form factor.


See Also