Quantum Mechanics
Quantum mechanics is a theory that describes the interactions of all particles and systems. It underlies all physical phenomena, including scattering.
Contents
Wavefunction
A quantum system is completely specified by its Wave Function:
The wavefunction is typically normalized:
Integral Notation | Dirac Notation |
---|---|
The distribution of the particle described by is given by:
Integral Notation | Dirac Notation |
---|---|
In the Copenhagen Interpretation, is the probability of finding the particle at location . In Universal Wave Function interpretations (e.g. MWI), can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:
These representations can be inter-related (c.f. Fourier transform):
Wave packet
TBD
Heisenberg Indeterminacy Relations
(Also known as Heisenberg Uncertainty Principle.)
Superposition
If and are both allowed states for a given system, then the following state is also allowed:
This leads to a notable consequence:
Notice that the final terms represent 'interference' between the two constituent states. This interference has no classical analogue; it is a quantum effect. Thus a superposition is not merely a 'joining' of the two states (e.g. "the particle can be in state 1 or state 2"), but a truly coherent interference between the two states. The superposition may be more generally written as:
Integral Notation | Dirac Notation |
---|---|
The distribution of the particle described by is given by:
Integral Notation | Dirac Notation |
---|---|