Ewald sphere

From GISAXS
Revision as of 08:24, 24 June 2014 by KevinYager (talk | contribs) (Created page with "The '''Ewald sphere''' is the surface, in reciprocal-space, that all experimentally-observed scattering arises from. (Strictly, only the ''elastic'' scattering comes from ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The Ewald sphere is the surface, in reciprocal-space, that all experimentally-observed scattering arises from. (Strictly, only the elastic scattering comes from the Ewald sphere; inelastic scattering is so-called 'off-shell'.) A peak observed on the detector indicates that a reciprocal-space peak is intersecting with the Ewald sphere.

Geometry

Definitions

Consider reciprocal-space in the incident beam coordinate system: . The incident beam is the vector , where:

where is, of course, the wavelength of the incident beam. An inelastic scattering event has momentum vector, and resultant momentum transfer, , of:

where is the full scattering angle. The Ewald sphere is centered about the point and thus has the equation:

TSAXS

In conventional SAXS, the signal of interest is isotropic: i.e. we only care about , and not the individual (directional) components . In such a case:

GISAXS

Now let us assume that the incident beam strikes a thin film mounted to a substrate. The incident beam is in the grazing-incidence geometry (e.g. GISAXS, and we denote the angle between the incident beam and the film surface as . The reciprocal-space of the sample is thus rotated by with respect to the beam reciprocal-space coordinates. We denote the sample's reciprocal coordinate system by uppercase, , and note that the equation of the Ewald sphere becomes (the center of the sphere is at ):