Talk:Lattice:Hexagonal diamond
From GISAXS
Jump to:
navigation
,
search
Absolute
4
b
o
t
t
o
m
l
a
y
e
r
:
1
12
+
1
6
+
1
12
+
1
6
=
1
2
{\displaystyle 4\,\mathrm {bottom\,\,layer} :\,{\frac {1}{12}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{6}}={\frac {1}{2}}}
(
0
,
0
,
0
)
,
(
a
,
0
,
0
)
,
(
b
2
,
3
b
2
,
0
)
,
(
a
+
b
2
,
3
b
2
,
0
)
{\displaystyle \left(0,0,0\right),(a,0,0),\left({\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},0\right),\left(a+{\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},0\right)}
4
m
i
d
l
a
y
e
r
:
1
6
+
1
3
+
1
6
+
1
3
=
1
{\displaystyle 4\,\mathrm {mid\,\,layer} :\,{\frac {1}{6}}+{\frac {1}{3}}+{\frac {1}{6}}+{\frac {1}{3}}=1}
(
0
,
0
,
5
c
8
)
,
(
a
,
0
,
5
c
8
)
,
(
b
2
,
3
b
2
,
5
c
8
)
,
(
a
+
b
2
,
3
b
2
,
5
c
8
)
{\displaystyle \left(0,0,{\frac {5c}{8}}\right),\left(a,0,{\frac {5c}{8}}\right),\left({\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},{\frac {5c}{8}}\right),\left(a+{\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},{\frac {5c}{8}}\right)}
2
i
n
t
e
r
n
a
l
s
t
r
u
t
:
1
+
1
=
2
{\displaystyle 2\,\mathrm {internal\,\,strut} :\,1+1=2}
(
a
2
,
b
2
3
,
c
8
)
,
(
a
2
,
b
2
3
,
4
c
8
)
{\displaystyle \left({\frac {a}{2}},{\frac {b}{2{\sqrt {3}}}},{\frac {c}{8}}\right),\left({\frac {a}{2}},{\frac {b}{2{\sqrt {3}}}},{\frac {4c}{8}}\right)}
4
t
o
p
l
a
y
e
r
:
1
12
+
1
6
+
1
12
+
1
6
=
1
2
{\displaystyle 4\,\mathrm {top\,\,layer} :\,{\frac {1}{12}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{6}}={\frac {1}{2}}}
(
0
,
0
,
c
)
,
(
a
,
0
,
c
)
,
(
b
2
,
3
b
2
,
c
)
,
(
a
+
b
2
,
3
b
2
,
c
)
{\displaystyle \left(0,0,c\right),(a,0,c),\left({\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},c\right),\left(a+{\frac {b}{2}},{\frac {{\sqrt {3}}b}{2}},c\right)}
Distances
For a particle-particle bond-length of
l
{\displaystyle l}
:
a
=
2
6
3
l
{\displaystyle a={\frac {2{\sqrt {6}}}{3}}l}
b
=
a
=
2
6
3
l
{\displaystyle b=a={\frac {2{\sqrt {6}}}{3}}l}
c
=
8
3
l
{\displaystyle c={\frac {8}{3}}l}
a
c
=
6
4
≈
0.61237
{\displaystyle {\frac {a}{c}}={\frac {\sqrt {6}}{4}}\approx 0.61237}
c
a
=
4
6
≈
1.63299
{\displaystyle {\frac {c}{a}}={\frac {4}{\sqrt {6}}}\approx 1.63299}
Absolute (in terms of particle-particle distance)
4
b
o
t
t
o
m
l
a
y
e
r
:
1
12
+
1
6
+
1
12
+
1
6
=
1
2
{\displaystyle 4\,\mathrm {bottom\,\,layer} :\,{\frac {1}{12}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{6}}={\frac {1}{2}}}
(
0
,
0
,
0
)
,
(
2
6
3
l
,
0
,
0
)
,
(
6
3
l
,
2
l
,
0
)
,
(
6
l
,
2
l
,
0
)
{\displaystyle \left(0,0,0\right),\left({\frac {2{\sqrt {6}}}{3}}l,0,0\right),\left({\frac {\sqrt {6}}{3}}l,{\sqrt {2}}l,0\right),\left({\sqrt {6}}l,{\sqrt {2}}l,0\right)}
4
m
i
d
l
a
y
e
r
:
1
6
+
1
3
+
1
6
+
1
3
=
1
{\displaystyle 4\,\mathrm {mid\,\,layer} :\,{\frac {1}{6}}+{\frac {1}{3}}+{\frac {1}{6}}+{\frac {1}{3}}=1}
(
0
,
0
,
5
3
l
)
,
(
2
6
3
l
,
0
,
5
3
l
)
,
(
6
3
l
,
2
l
,
5
3
l
)
,
(
6
l
,
2
l
,
5
3
l
)
{\displaystyle \left(0,0,{\frac {5}{3}}l\right),\left({\frac {2{\sqrt {6}}}{3}}l,0,{\frac {5}{3}}l\right),\left({\frac {\sqrt {6}}{3}}l,{\sqrt {2}}l,{\frac {5}{3}}l\right),\left({\sqrt {6}}l,{\sqrt {2}}l,{\frac {5}{3}}l\right)}
2
i
n
t
e
r
n
a
l
s
t
r
u
t
:
1
+
1
=
2
{\displaystyle 2\,\mathrm {internal\,\,strut} :\,1+1=2}
(
6
3
l
,
2
3
l
,
1
3
l
)
,
(
6
3
l
,
2
3
l
,
4
3
l
)
{\displaystyle \left({\frac {\sqrt {6}}{3}}l,{\frac {\sqrt {2}}{3}}l,{\frac {1}{3}}l\right),\left({\frac {\sqrt {6}}{3}}l,{\frac {\sqrt {2}}{3}}l,{\frac {4}{3}}l\right)}
4
t
o
p
l
a
y
e
r
:
1
12
+
1
6
+
1
12
+
1
6
=
1
2
{\displaystyle 4\,\mathrm {top\,\,layer} :\,{\frac {1}{12}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{6}}={\frac {1}{2}}}
(
0
,
0
,
8
3
l
)
,
(
2
6
3
l
,
0
,
8
3
l
)
,
(
6
3
l
,
2
l
,
8
3
l
)
,
(
6
l
,
2
l
,
8
3
l
)
{\displaystyle \left(0,0,{\frac {8}{3}}l\right),\left({\frac {2{\sqrt {6}}}{3}}l,0,{\frac {8}{3}}l\right),\left({\frac {\sqrt {6}}{3}}l,{\sqrt {2}}l,{\frac {8}{3}}l\right),\left({\sqrt {6}}l,{\sqrt {2}}l,{\frac {8}{3}}l\right)}
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Permanent link
Page information