Geometry:TSAXS 3D

From GISAXS
Jump to: navigation, search

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is defined by a right-triangle with base d and height :

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

The components are:

Summarizing:

Components (angular)

For arbitrary 3D scattering vectors, the momentum transfer components are:

In vector form:

Total magnitude

Note that this provides a simple expression for q total:

Check

As a check of these results, consider:

And:

Components (distances)

Note that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos \theta _{f}=d/{\sqrt {d^{2}+x^{2}}}} , and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos ^{2}\theta _{f}=d^{2}/(d^{2}+x^{2})} so:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}{\frac {1}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}&={\frac {1}{\sqrt {d^{2}+z^{2}\left(d^{2}/(d^{2}+x^{2})\right)}}}\\&={\frac {1}{{\sqrt {d^{2}}}{\sqrt {((d^{2}+x^{2})+z^{2})/(d^{2}+x^{2})}}}}\\&={\frac {\sqrt {d^{2}+x^{2}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}\\\end{alignedat}}}

And:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\mathbf {q} &={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {xd}{\sqrt {d^{2}+x^{2}}}}{\frac {\sqrt {d^{2}+x^{2}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}\\{\frac {d}{\sqrt {d^{2}+x^{2}}}}{\frac {d{\sqrt {d^{2}+x^{2}}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}-1\\{\frac {z\left(d/{\sqrt {d^{2}+x^{2}}}\right){\sqrt {d^{2}+x^{2}}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {x}{\sqrt {x^{2}+d^{2}+z^{2}}}}\\{\frac {d}{\sqrt {x^{2}+d^{2}+z^{2}}}}-1\\{\frac {z}{\sqrt {x^{2}+d^{2}+z^{2}}}}\end{bmatrix}}\\\end{alignedat}}}

Total magnitude

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}&=\left({\frac {x}{\sqrt {x^{2}+d^{2}+z^{2}}}}\right)^{2}+\left({\frac {d-{\sqrt {x^{2}+d^{2}+z^{2}}}}{\sqrt {x^{2}+d^{2}+z^{2}}}}\right)^{2}+\left({\frac {z}{\sqrt {x^{2}+d^{2}+z^{2}}}}\right)^{2}\\&={\frac {x^{2}+\left(d-{\sqrt {x^{2}+d^{2}+z^{2}}}\right)^{2}+z^{2}}{x^{2}+d^{2}+z^{2}}}\\&={\frac {x^{2}+\left(d^{2}-2d{\sqrt {x^{2}+d^{2}+z^{2}}}+x^{2}+d^{2}+z^{2}\right)+z^{2}}{x^{2}+d^{2}+z^{2}}}\\&={\frac {2x^{2}+2d^{2}+2z^{2}-2d{\sqrt {x^{2}+d^{2}+z^{2}}}}{x^{2}+d^{2}+z^{2}}}\\&=2{\frac {(x^{2}+d^{2}+z^{2})-d{\sqrt {x^{2}+d^{2}+z^{2}}}}{x^{2}+d^{2}+z^{2}}}\\&=2\left(1-{\frac {d}{\sqrt {x^{2}+d^{2}+z^{2}}}}\right)\\q&={\sqrt {2}}k{\sqrt {1-{\frac {d}{\sqrt {x^{2}+d^{2}+z^{2}}}}}}\end{alignedat}}}