In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position
. The scattering angles are then:
![{\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/facc9ad57cd58f15e7403d40dc08f08815d3662b)
where
is the sample-detector distance,
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
.
Total scattering
The full scattering angle is defined by a right-triangle with base d and height
:
![{\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce190aa4f7dd836349234c33033cb245c49d4f20)
The total momentum transfer is:
![{\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&={\frac {4\pi }{\lambda }}\sin \left({\frac {1}{2}}\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/978ccef9bfce6510674b68221b9f287f94e0bc79)
Given that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos(2\theta _{s})&={\frac {1}{\sqrt {1+({\sqrt {x^{2}+z^{2}}}/d)^{2}}}}\\&={\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a031cc7bdbb545bcbf2e5d51b1899f74c01e74)
We can also write:

Where we take for granted that q must be positive.
In-plane only
If
(and
), then
,
, and:

The other component can be thought of in terms of the sides of a right-triangle with angle
:

Summarizing:

Out-of-plane only
If
, then
,
, and:

The components are:

Summarizing:

Components (angular)
For arbitrary 3D scattering vectors, the momentum transfer components are:

In vector form:

Total magnitude
Note that this provides a simple expression for q total:

Check
As a check of these results, consider:

And:

Components (distances)
![{\displaystyle {\begin{alignedat}{2}\mathbf {q} &={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \theta _{f}\cos \alpha _{f}\\\cos \theta _{f}\cos \alpha _{f}-1\\\sin \alpha _{f}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \left(\arctan \left[{\frac {x}{d}}\right]\right)\cos \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)\\\cos \left(\arctan \left[{\frac {x}{d}}\right]\right)\cos \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)-1\\\sin \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {x/d}{\sqrt {1+\left(x/d\right)^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\\{\frac {1}{\sqrt {1+\left(x/d\right)^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\\{\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {xd}{\sqrt {d^{2}+x^{2}}}}{\frac {1}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\\{\frac {d}{\sqrt {d^{2}+x^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\\{\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\end{bmatrix}}\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea671cecdf06e0446180db0c1e73d2bb4fd81a5)
Note that
, and
so:

And:

Total magnitude
