Talk:DWBA

From GISAXS
Jump to: navigation, search

DWBA Equation in thin film

Using the notation for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:




Equation

We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:

Simplification

We can rearrange to:

We define , and note that for any complex number , it is true that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c+c^{*}=2\mathrm {Re} [c]} . Thus:

Breaking into components

The experimental data Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d}(q_{z})} can be broken into contributions from the transmitted channel and reflected channel :

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(+Q_{z1})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(+Q_{z2})\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Tc} })+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Rc} })\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{d,\mathrm {Tc} }(q_{z})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{d,\mathrm {Rc} }(q_{z})\\&=|Tc|^{2}I_{d,\mathrm {Tc} }(q_{z})+|Rc|^{2}I_{d,\mathrm {Rc} }(q_{z})\\\end{aligned}}}

We define the ratio between the channels to be:

Such that one can compute the two components from:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=|Tc|^{2}(I_{d,\mathrm {Tc} }(q_{z}))+|Rc|^{2}(I_{d,\mathrm {Rc} }(q_{z}))\\I_{d}(q_{z})&=|Tc|^{2}(I_{d,\mathrm {Tc} }(q_{z}))+|Rc|^{2}\left({\frac {I_{d,\mathrm {Tc} }(q_{z})-wI_{d,\mathrm {Tc} }(q_{z})}{w}}\right)\\I_{d}(q_{z})&=I_{d,\mathrm {Tc} }(q_{z})\times \left(|Tc|^{2}+|Rc|^{2}{\frac {1}{w}}-|Rc|^{2}{\frac {w}{w}}\right)\\I_{d,\mathrm {Tc} }(q_{z})&={\frac {I_{d}(q_{z})}{|Tc|^{2}+{\frac {|Rc|^{2}}{w}}-|Rc|^{2}}}\\\end{aligned}}}

and:


Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d,\mathrm {Rc} }(q_{z})&={\frac {I_{d}(q_{z})-|Tc|^{2}I_{d,\mathrm {Tc} }(q_{z})}{|Rc|^{2}}}\\&={\frac {I_{d}(q_{z})}{|Rc|^{2}}}-{\frac {|Tc|^{2}}{|Rc|^{2}}}I_{d,\mathrm {Tc} }(q_{z})\end{aligned}}}

or: