DWBA Equation in thin film
Using the notation
for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation
and
. The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
We define
, and note that for any complex number
, it is true that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c+c^{*}=2\mathrm {Re} [c]}
. Thus:
Breaking into components
The experimental data Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d}(q_{z})}
can be broken into contributions from the transmitted channel
and reflected channel
:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(+Q_{z1})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(+Q_{z2})\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Tc} })+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Rc} })\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{d,\mathrm {Tc} }(q_{z})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{d,\mathrm {Rc} }(q_{z})\\&=|Tc|^{2}I_{d,\mathrm {Tc} }(q_{z})+|Rc|^{2}I_{d,\mathrm {Rc} }(q_{z})\\\end{aligned}}}
We define the ratio between the channels to be:
Such that one can compute the two components from:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=|Tc|^{2}(I_{d,\mathrm {Tc} }(q_{z}))+|Rc|^{2}(I_{d,\mathrm {Rc} }(q_{z}))\\I_{d}(q_{z})&=|Tc|^{2}(I_{d,\mathrm {Tc} }(q_{z}))+|Rc|^{2}\left({\frac {I_{d,\mathrm {Tc} }(q_{z})-wI_{d,\mathrm {Tc} }(q_{z})}{w}}\right)\\I_{d}(q_{z})&=I_{d,\mathrm {Tc} }(q_{z})\times \left(|Tc|^{2}+|Rc|^{2}{\frac {1}{w}}-|Rc|^{2}{\frac {w}{w}}\right)\\I_{d,\mathrm {Tc} }(q_{z})&={\frac {I_{d}(q_{z})}{|Tc|^{2}+{\frac {|Rc|^{2}}{w}}-|Rc|^{2}}}\\\end{aligned}}}
and:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d,\mathrm {Rc} }(q_{z})&={\frac {I_{d}(q_{z})-|Tc|^{2}I_{d,\mathrm {Tc} }(q_{z})}{|Rc|^{2}}}\\&={\frac {I_{d}(q_{z})}{|Rc|^{2}}}-{\frac {|Tc|^{2}}{|Rc|^{2}}}I_{d,\mathrm {Tc} }(q_{z})\end{aligned}}}
or: