Talk:Extra:Intersecting planes
Rotate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{2b}} about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
Rotate about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
Generalized distance between two vectors
Warning: Errors below (this is just intermediate/working stuff)
Imagine reciprocal-space scattering that is a ring; more specifically a pseudo-toroid with Gaussian-like decay. The intensity overall is:
Where we use the subscript r to denote the reciprocal-space coordinate system, and . The plane of the detector (i.e. the Ewald plane) is denoted by d:
We set the symmetry axis in realspace (detector coordinate system) to be the -axis. The reciprocal-space is tilted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \chi_0} (about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle y} -axis), before the 'powder' rotation about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle x} -axis (where goes from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle -\pi} to ). Consider an initial vector:
The 1st rotation (about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle y} -axis by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \chi_0} ) involves:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{d1} & = R_y(\chi_0) \mathbf{v}_{d0} \\ & = \begin{bmatrix} \cos \chi_0 & 0 & \sin \chi_0 \\ 0 & 1 & 0 \\ -\sin \chi_0 & 0 & \cos \chi_0 \\ \end{bmatrix} \begin{bmatrix} q \sin \phi \\ q \cos \phi \\ 0 \\ \end{bmatrix} \\ & = \begin{bmatrix} q \sin \phi \cos \chi_0 \\ q \cos \phi \\ - q \sin \phi \sin \chi_0 \\ \end{bmatrix} \end{alignat} }
Consider a 2nd rotation around the vector (normal to the detector plane) (Warning: This is erroneous since the alpha rotation is just another phi rotation.):
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{n}_{d1} & = R_y(\chi_0) \mathbf{n}_{d0} \\ & = \begin{bmatrix} \cos \chi_0 & 0 & \sin \chi_0 \\ 0 & 1 & 0 \\ -\sin \chi_0 & 0 & \cos \chi_0 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix} \\ & = \begin{bmatrix} \sin \chi_0 \\ 0 \\ \cos \chi_0 \\ \end{bmatrix} \end{alignat} }
So the second rotation yields:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{d2} & = \begin{bmatrix} u(ux +wz)(1-\cos \alpha) + x \cos \alpha + -wy \sin \alpha \\ y \cos \alpha + (wx-uz) \sin \alpha\\ w(ux+wz)(1-\cos \alpha) + z \cos \alpha + uy \sin \alpha \end{bmatrix} \\ & = \begin{bmatrix} \sin \chi_0 (\sin \chi_0 q \sin \phi \cos \chi_0 - \cos \chi_0 q \sin \phi \sin \chi_0)(1-\cos \alpha) + q \sin \phi \cos \chi_0 \cos \alpha + - \cos \chi_0 q \cos \phi \sin \alpha \\ q \cos \phi \cos \alpha + (\cos \chi_0 q \sin \phi \cos \chi_0 + \sin \chi_0 q \sin \phi \sin \chi_0) \sin \alpha\\ \cos \chi_0(\sin \chi_0 q \sin \phi \cos \chi_0 - \cos \chi_0 q \sin \phi \sin \chi_0)(1-\cos \alpha) + - q \sin \phi \sin \chi_0 \cos \alpha + \sin \chi_0 q \cos \phi \sin \alpha \end{bmatrix} \\ & = q \begin{bmatrix} \sin^2 \chi_0 \sin \phi (\cos \chi_0 - \cos \chi_0 )(1-\cos \alpha) + \sin \phi \cos \chi_0 \cos \alpha - \cos \chi_0 \cos \phi \sin \alpha \\ \cos \phi \cos \alpha + \sin \phi (\cos^2 \chi_0 + \sin^2 \chi_0 ) \sin \alpha\\ \cos \chi_0 \sin \chi_0 \sin \phi (\cos \chi_0 - \cos \chi_0 )(1-\cos \alpha) - \sin \phi \sin \chi_0 \cos \alpha + \sin \chi_0 \cos \phi \sin \alpha \end{bmatrix} \\ & = q \begin{bmatrix} \cos \chi_0 ( \sin \phi \cos \alpha - \cos \phi \sin \alpha ) \\ \cos \phi \cos \alpha + \sin \phi \sin \alpha\\ -\sin \chi_0 ( \sin \phi \cos \alpha - \cos \phi \sin \alpha ) \end{bmatrix} \\ \end{alignat} }