Difference between revisions of "Extra:Intersecting planes"
KevinYager (talk | contribs) (→a) |
KevinYager (talk | contribs) (→a) |
||
| (2 intermediate revisions by the same user not shown) | |||
| Line 180: | Line 180: | ||
</math> | </math> | ||
| − | |||
More specifically: | More specifically: | ||
::<math> | ::<math> | ||
| Line 196: | Line 195: | ||
& = | & = | ||
q \begin{bmatrix} | q \begin{bmatrix} | ||
| − | \cos \chi_0 \sin \phi | + | \cos \chi_0 \sin \phi(1-\cos \alpha) + \sin \phi \cos \chi_0 \cos \alpha +\sin \chi_0 \cos \phi \sin \alpha \\ |
| − | \cos \phi \cos | + | \cos \phi \cos \alpha\\ |
| − | -\sin \chi_0 \sin \phi | + | -\sin \chi_0 \sin \phi (1-\cos \alpha) - \sin \phi \sin \chi_0 \cos \alpha + \cos \chi_0 \cos \phi \sin \alpha \end{bmatrix} \\ |
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
This vector describes the possible positions of the intersecting detector-plane, in the sample's reciprocal-space. | This vector describes the possible positions of the intersecting detector-plane, in the sample's reciprocal-space. | ||
Latest revision as of 17:16, 23 December 2015
A common problem in scattering is to consider the intersection of various planes (representing the Ewald sphere, reciprocal space, etc.).
Angle between two planes
The general case for the angle between two planes is well known. Consider a particular case where we want to know how the angle between two planes depends on the direction/orientation of a third plane/vector that intersects the first two. I.e. what is the minimal angle between two planes along a 'certain direction' (what is the angle between two vectors that both lie on the third plane, and which lie on planes 1 and 2, respectively).
One of the planes represents reciprocal-space scattering (e.g. mostly localized to a plane); the other represents the detector. We are interested in the angle between them so that we can calculate the distance between them, so that we can compute 'how much' scattering is seen on the detector. To make this concrete, plane 1 lies in the plane, and thus has normal vector:
The first plane intersects the origin. The second plane also intersects the origin, but is tilted about the -axis by , such that its normal is:
We are interested in quantities that are a particular distance () from the origin. Imagine a vector of length lying in plane 1, rotated about the Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle z} axis by (i.e. the angular distance from the Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle y} -axis is ):
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbf {v} _{1}={\begin{bmatrix}q\sin \phi &q\cos \phi \ &0\end{bmatrix}}}
The second vector (Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2}} ) is lying in plane 2. We call Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{r}} the angle between Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{1}} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2}} . The specified geometry uniquely defines Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{r}} in terms of the angle between the planes () and the amount of rotation of the vectors () within their respective planes. In particular, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2}} can be thought of as Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2b}} rotated about by , where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2}b} is the vector in plane 2 without any rotation (i.e. lying in the Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle yz} plane):
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbf {v} _{2b}={\begin{bmatrix}0&q\cos \alpha \ &q\sin \alpha \end{bmatrix}}}
In general, rotation of a vector Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{\mathrm {start} }={\begin{bmatrix}x&y&z\end{bmatrix}}} about an arbitrary unit-vector Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {n} ={\begin{bmatrix}u&v&w\end{bmatrix}}} gives (1, 2):
In this particular case, we thus expect:
Note that we replace by to force the same orientation convention in the definition of rotating Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{1}} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{2}} :
The angle between Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{1}} and is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{r}} :
Distance between two planes
The distance between Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \mathbf {v} _{1}} and is :
Alternatively:
If the two vectors do not have equal length:
Generalized intersection
Imagine reciprocal-space scattering that is a ring; more specifically a pseudo-toroid with Gaussian-like decay. The intensity overall is:
Where we use the subscript r to denote the reciprocal-space coordinate system, and . The plane of the detector (i.e. the Ewald plane) is denoted by d:
We set the symmetry axis in realspace (detector coordinate system) to be the -axis. The reciprocal-space is tilted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \chi_0} (about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle y} -axis), before the 'powder' rotation about the -axis (where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha} goes from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle -\pi} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle +\pi} ). Consider an initial vector:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{d0} = \begin{bmatrix} q \sin \phi & q \cos \phi & 0 \end{bmatrix} }
The 1st rotation (about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle y} -axis by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \chi_0} ) involves:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{d1} & = R_y(\chi_0) \mathbf{v}_{d0} \\ & = \begin{bmatrix} \cos \chi_0 & 0 & \sin \chi_0 \\ 0 & 1 & 0 \\ -\sin \chi_0 & 0 & \cos \chi_0 \\ \end{bmatrix} \begin{bmatrix} q \sin \phi \\ q \cos \phi \\ 0 \\ \end{bmatrix} \\ & = \begin{bmatrix} q \sin \phi \cos \chi_0 \\ q \cos \phi \\ - q \sin \phi \sin \chi_0 \\ \end{bmatrix} \end{alignat} }
The 2nd rotation (about the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle q_{dx}} -axis by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \alpha} ) occurs with respect to the vector:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{u}_{d1} & = R_y(\chi_0) \mathbf{u}_{d0} \\ & = \begin{bmatrix} \cos \chi_0 & 0 & \sin \chi_0 \\ 0 & 1 & 0 \\ -\sin \chi_0 & 0 & \cos \chi_0 \\ \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix} \\ & = \begin{bmatrix} \cos \chi_0 \\ 0 \\ - \sin \chi_0 \\ \end{bmatrix} \end{alignat} }
The second rotation can again be thought of in general terms as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x & y & z \end{bmatrix}} rotated by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \theta} about an unit-vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{u} = \begin{bmatrix} u & v & w \end{bmatrix}} .
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +vy+wz)(1-\cos \theta) + x \cos \theta + (-wy+vz)\sin \theta \\ v(ux+vy+wz)(1 - \cos \theta) + y \cos \theta + (wx-uz) \sin \theta\\ w(ux+vy+wz)(1-\cos \theta) + z \cos \theta + (-vx+uy) \sin \theta \end{bmatrix} }
In this case:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{\mathrm{start}} & = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{v}_{d1} = \begin{bmatrix} q \sin \phi \cos \chi_0 \\ q \cos \phi \\ -q \sin \phi \sin \chi_0 \end{bmatrix} \\ \mathbf{u} & = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \mathbf{u}_{d1} = \begin{bmatrix} \cos \chi_0 \\ 0 \\ -\sin \chi_0 \end{bmatrix} \end{alignat} }
This reduces the problem to:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +wz)(1-\cos \alpha) + x \cos \alpha + -wy \sin \alpha \\ y \cos \alpha + (wx-uz) \sin \alpha\\ w(ux+wz)(1-\cos \alpha) + z \cos \alpha + uy \sin \alpha \end{bmatrix} }
More specifically:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{d2} & = \begin{bmatrix} \cos \chi_0 (\cos \chi_0 q \sin \phi \cos \chi_0 +\sin \chi_0 q \sin \phi \sin \chi_0)(1-\cos \alpha) + q \sin \phi \cos \chi_0 \cos \alpha +\sin \chi_0 q \cos \phi \sin \alpha \\ q \cos \phi \cos \alpha + (-\sin \chi_0 q \sin \phi \cos \chi_0 + \cos \chi_0 q \sin \phi \sin \chi_0 ) \sin \alpha\\ -\sin \chi_0 ( \cos \chi_0 q \sin \phi \cos \chi_0 +\sin \chi_0 q \sin \phi \sin \chi_0 )(1-\cos \alpha) -q \sin \phi \sin \chi_0 \cos \alpha + \cos \chi_0 q \cos \phi \sin \alpha \end{bmatrix} \\ & = q \begin{bmatrix} \cos \chi_0 \sin \phi(\cos^2 \chi_0 +\sin^2 \chi_0 )(1-\cos \alpha) + \sin \phi \cos \chi_0 \cos \alpha +\sin \chi_0 \cos \phi \sin \alpha \\ \cos \phi \cos \alpha + \sin \phi (-\sin \chi_0 \cos \chi_0 + \cos \chi_0 \sin \chi_0 ) \sin \alpha\\ -\sin \chi_0 \sin \phi ( \cos^2 \chi_0 +\sin^2 \chi_0 )(1-\cos \alpha) - \sin \phi \sin \chi_0 \cos \alpha + \cos \chi_0 \cos \phi \sin \alpha \end{bmatrix} \\ & = q \begin{bmatrix} \cos \chi_0 \sin \phi(1-\cos \alpha) + \sin \phi \cos \chi_0 \cos \alpha +\sin \chi_0 \cos \phi \sin \alpha \\ \cos \phi \cos \alpha\\ -\sin \chi_0 \sin \phi (1-\cos \alpha) - \sin \phi \sin \chi_0 \cos \alpha + \cos \chi_0 \cos \phi \sin \alpha \end{bmatrix} \\ \end{alignat} }
This vector describes the possible positions of the intersecting detector-plane, in the sample's reciprocal-space.