|
|
| Line 1: |
Line 1: |
| | + | Using the notation <math>T_i = T(\alpha_i)</math> for compactness, the DWBA equation can be written as: |
| | + | |
| | <math> | | <math> |
| | \begin{align} | | \begin{align} |
| Line 21: |
Line 23: |
| | | | |
| | \end{align} \\ | | \end{align} \\ |
| | + | |
| | + | \end{align} |
| | + | </math> |
| | + | The DWBA equation is: |
| | + | <math> |
| | + | I_d(q_{z}) = T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 |
| | + | </math> |
| | + | |
| | + | Taking advantage of the fact that <math>|F(Q)|^2 = I(Q)</math> and <math>I(+Q)=I(-Q)</math>, we can rearrange to: |
| | + | |
| | + | |
| | + | <math> |
| | + | \begin{align} |
| | + | I_d(q_{z}) = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ |
| | + | |
| | + | & + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ |
| | + | & + T_i R_i T_f R_f F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1})F(-Q_{z1}) \\ |
| | + | & + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ |
| | + | & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ |
| | + | & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ |
| | + | & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| | + | & + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
| | + | & + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| | + | |
| | + | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ |
| | + | & + 2 \times T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ |
| | + | & + T_i R_i T_f R_f [ 2 F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z1})F(+Q_{z2}) + 2 F(+Q_{z2})F(-Q_{z2}) ] \\ |
| | + | & + 2 \times T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ |
| | + | & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ |
| | + | & + 2 \times R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| | + | |
| | + | |
| | + | |
| | | | |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
Revision as of 18:02, 6 March 2018
Using the notation
for compactness, the DWBA equation can be written as:
The DWBA equation is:
Taking advantage of the fact that
and
, we can rearrange to: