Difference between revisions of "Talk:DWBA"
KevinYager (talk | contribs) |
KevinYager (talk | contribs) |
||
Line 1: | Line 1: | ||
==DWBA Equation in thin film== | ==DWBA Equation in thin film== | ||
Using the notation <math>T_i = T(\alpha_i)</math> for compactness, the DWBA equation inside a thin film can be written: | Using the notation <math>T_i = T(\alpha_i)</math> for compactness, the DWBA equation inside a thin film can be written: | ||
+ | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
Line 13: | Line 14: | ||
==Expansion== | ==Expansion== | ||
If one expands the <math>|\ellipsis}^2</math> of the DWBA, one obtains 16 terms: | If one expands the <math>|\ellipsis}^2</math> of the DWBA, one obtains 16 terms: | ||
+ | |||
<math> | <math> | ||
+ | tbd | ||
</math> | </math> | ||
+ | |||
The equation can thus be written as: | The equation can thus be written as: | ||
+ | |||
<math> | <math> | ||
\begin{align} | \begin{align} |
Revision as of 18:06, 6 March 2018
DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }
Expansion
If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\ellipsis}^2} of the DWBA, one obtains 16 terms:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle tbd }
The equation can thus be written as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ & \begin{align} = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ & && + T_i R_i T_f R_f F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ & + R_i^2 T_f^2 | F(+Q_{z2}) |^2 && + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ & + R_i^2 R_f^2 | F(-Q_{z1}) |^2 && + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ & && + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ \end{align} \\ \end{align} }
We can rearrange to:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ & + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ & + T_i R_i T_f R_f F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1})F(-Q_{z1}) \\ & + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ & + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ & + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ & + 2 \times T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ & + T_i R_i T_f R_f [ 2 F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z1})F(+Q_{z2}) + 2 F(+Q_{z2})F(-Q_{z2}) ] \\ & + 2 \times T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ & + 2 \times R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ \end{align} }