|
|
| Line 12: |
Line 12: |
| | </math> | | </math> |
| | | | |
| − | ==Expansion== | + | ==Expansion (incorrect)== |
| | '''WARNING: This incorrectly ignores the complex components.''' | | '''WARNING: This incorrectly ignores the complex components.''' |
| | ===Terms=== | | ===Terms=== |
| Line 111: |
Line 111: |
| | + 2 \times R_i^2T_fR_f F_{-1}F_{+2} | | + 2 \times R_i^2T_fR_f F_{-1}F_{+2} |
| | \end{align} | | \end{align} |
| | + | </math> |
| | + | |
| | + | ==Expansion== |
| | + | |
| | + | ===Terms=== |
| | + | If one expands the <math>|...|^2</math> of the DWBA, one obtains 16 terms: |
| | + | |
| | + | <math> |
| | + | |
| | + | \begin{matrix} |
| | + | & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ |
| | + | (T_i T_f) & T_i T_i^* T_f T_f^* & T_i^2 T_f R_f & T_iR_iT_f^2 & T_iR_iT_fR_f \\ |
| | + | (T_i R_f) & T_i^2T_fR_f & T_i^2R_f^2 & T_iR_iT_fR_f & T_iR_iR_f^2 \\ |
| | + | (R_i T_f) & T_iR_iT_f^2 & T_iR_iT_fR_f & R_i^2T_f^2 & R_i^2T_fR_f \\ |
| | + | (R_i R_f) & T_iR_iT_fR_f & T_iR_iR_f^2 & R_i^2T_fR_f & R_i^2R_f^2 \\ |
| | + | \end{matrix} |
| | + | |
| | </math> | | </math> |
| | | | |
Revision as of 17:31, 12 March 2018
DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)}
for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2}
of the DWBA, one obtains 16 terms:
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{matrix}&(T_{i}^{*}T_{f}^{*})&(T_{i}^{*}R_{f}^{*})&(R_{i}^{*}T_{f}^{*})&(R_{i}^{*}R_{f}^{*})\\(T_{i}T_{f})&T_{i}T_{i}^{*}T_{f}T_{f}^{*}&T_{i}^{2}T_{f}R_{f}&T_{i}R_{i}T_{f}^{2}&T_{i}R_{i}T_{f}R_{f}\\(T_{i}R_{f})&T_{i}^{2}T_{f}R_{f}&T_{i}^{2}R_{f}^{2}&T_{i}R_{i}T_{f}R_{f}&T_{i}R_{i}R_{f}^{2}\\(R_{i}T_{f})&T_{i}R_{i}T_{f}^{2}&T_{i}R_{i}T_{f}R_{f}&R_{i}^{2}T_{f}^{2}&R_{i}^{2}T_{f}R_{f}\\(R_{i}R_{f})&T_{i}R_{i}T_{f}R_{f}&T_{i}R_{i}R_{f}^{2}&R_{i}^{2}T_{f}R_{f}&R_{i}^{2}R_{f}^{2}\\\end{matrix}}}
Breaking into components
The experimental data Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_d(q_z)}
can be broken into contributions from the transmitted channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Tc}(qz)}
and reflected channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Rc}(qz)}
:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\ & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ \end{align} }
We define the ratio between the channels to be:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } \end{align} }
Such that one can compute the two components from:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }
and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} \end{align} }