Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Expansion)
(Expansion)
Line 12: Line 12:
 
</math>
 
</math>
  
==Expansion==
+
==Expansion (incorrect)==
 
'''WARNING: This incorrectly ignores the complex components.'''
 
'''WARNING: This incorrectly ignores the complex components.'''
 
===Terms===
 
===Terms===
Line 111: Line 111:
 
           + 2 \times R_i^2T_fR_f F_{-1}F_{+2}
 
           + 2 \times R_i^2T_fR_f F_{-1}F_{+2}
 
\end{align}
 
\end{align}
 +
</math>
 +
 +
==Expansion==
 +
 +
===Terms===
 +
If one expands the <math>|...|^2</math> of the DWBA, one obtains 16 terms:
 +
 +
<math>
 +
 +
\begin{matrix}
 +
          &  (T_i^* T_f^*)    &  (T_i^* R_f^*)      &  (R_i^* T_f^*)    &  (R_i^* R_f^*)    \\
 +
(T_i T_f)  &  T_i T_i^* T_f T_f^*    &  T_i^2 T_f R_f  & T_iR_iT_f^2    &  T_iR_iT_fR_f  \\
 +
(T_i R_f)  &  T_i^2T_fR_f  &  T_i^2R_f^2    &  T_iR_iT_fR_f  &  T_iR_iR_f^2  \\
 +
(R_i T_f)  &  T_iR_iT_f^2  &  T_iR_iT_fR_f  &  R_i^2T_f^2    &  R_i^2T_fR_f  \\
 +
(R_i R_f)  &  T_iR_iT_fR_f  &  T_iR_iR_f^2    &  R_i^2T_fR_f  &  R_i^2R_f^2    \\
 +
\end{matrix}
 +
 
</math>
 
</math>
  

Revision as of 17:31, 12 March 2018

DWBA Equation in thin film

Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2} of the DWBA, one obtains 16 terms:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{matrix}&(T_{i}^{*}T_{f}^{*})&(T_{i}^{*}R_{f}^{*})&(R_{i}^{*}T_{f}^{*})&(R_{i}^{*}R_{f}^{*})\\(T_{i}T_{f})&T_{i}T_{i}^{*}T_{f}T_{f}^{*}&T_{i}^{2}T_{f}R_{f}&T_{i}R_{i}T_{f}^{2}&T_{i}R_{i}T_{f}R_{f}\\(T_{i}R_{f})&T_{i}^{2}T_{f}R_{f}&T_{i}^{2}R_{f}^{2}&T_{i}R_{i}T_{f}R_{f}&T_{i}R_{i}R_{f}^{2}\\(R_{i}T_{f})&T_{i}R_{i}T_{f}^{2}&T_{i}R_{i}T_{f}R_{f}&R_{i}^{2}T_{f}^{2}&R_{i}^{2}T_{f}R_{f}\\(R_{i}R_{f})&T_{i}R_{i}T_{f}R_{f}&T_{i}R_{i}R_{f}^{2}&R_{i}^{2}T_{f}R_{f}&R_{i}^{2}R_{f}^{2}\\\end{matrix}}}

Breaking into components

The experimental data Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_d(q_z)} can be broken into contributions from the transmitted channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Tc}(qz)} and reflected channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{Rc}(qz)} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\ & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ \end{align} }

We define the ratio between the channels to be:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } \end{align} }

Such that one can compute the two components from:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }

and:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} \end{align} }