|
|
| Line 176: |
Line 176: |
| | | | |
| | ==Breaking into components== | | ==Breaking into components== |
| − | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{Tc}(qz)</math> and reflected channel <math>I_{Rc}(qz)</math>: | + | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,Tc}(qz)</math> and reflected channel <math>I_{d,Rc}(qz)</math>: |
| | | | |
| | <math> | | <math> |
| | \begin{align} | | \begin{align} |
| | I_d(q_{z}) | | I_d(q_{z}) |
| − | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ |
| − | & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,Tc}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,Rc}) \\ |
| | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,Rc}(q_z) \\ |
| | + | & = |Tc|^2 I_{d,Tc}(q_z) + |Rc|^2 I_{d,Rc}(q_z) \\ |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
| Line 191: |
Line 193: |
| | \begin{align} | | \begin{align} |
| | w | | w |
| − | & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } | + | & = \frac{ I_{d,Tc}(q_z) }{ I_{d,Tc}(q_z) + I_{d,Rc}(q_z) } |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
| Line 199: |
Line 201: |
| | <math> | | <math> |
| | \begin{align} | | \begin{align} |
| − | I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 ( I_{d,Rc}(q_z) ) \\ |
| − | I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,Tc}(q_z) - w I_{d,Tc}(q_z) }{w} \right ) \\ |
| − | I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ | + | I_d(q_{z}) & = I_{d,Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ |
| − | I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ | + | I_{d,Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
| Line 211: |
Line 213: |
| | <math> | | <math> |
| | \begin{align} | | \begin{align} |
| − | I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} | + | I_{d,Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,Tc}(q_z) }{|Rc|^2} |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
DWBA Equation in thin film
Using the notation
for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation
and
. The DWBA equation can thus be expanded as:
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel
and reflected channel
:
We define the ratio between the channels to be:
Such that one can compute the two components from:
and: