|
|
Line 3: |
Line 3: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ | | \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} | + | & = k \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| So: | | So: |
| :<math> | | :<math> |
| + | \begin{alignat}{2} |
| + | \alpha_f & = \sin^{-1} \left[ \frac{q_z}{k} \right] \\ |
| + | \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ |
| + | \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ |
| + | q_y & = \cos \theta_f \cos \alpha_f - 1 \\ |
| + | & = \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \\ |
| + | & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 |
| + | \end{alignat} |
| </math> | | </math> |
| | | |
Revision as of 16:20, 15 April 2019
Compute 

So:
![{\displaystyle {\begin{alignedat}{2}\alpha _{f}&=\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\\{\frac {q_{x}}{k}}&=\sin \theta _{f}\cos \alpha _{f}\\\theta _{f}&=\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\\q_{y}&=\cos \theta _{f}\cos \alpha _{f}-1\\&=\cos \left(\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\right)\cos \left(\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\right)-1\\&={\sqrt {1-\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]^{2}}}{\sqrt {1-\left[{\frac {q_{z}}{k}}\right]^{2}}}-1\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b68ad15d6d0852f9dcba045b5fd25117b1053c2e)
Scratch/working (contains errors)
As a check of these results, consider:

Where we used:
![{\displaystyle {\begin{alignedat}{2}\sin(\arctan[u])&={\frac {u}{\sqrt {1+u^{2}}}}\\\sin \theta _{f}&=\sin(\arctan[x/d])\\&={\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {x}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9628f0d308053600f4e02d8f80c69fc9f356d0)
And, we further note that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos \theta _{f}&={\frac {1}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/584da470743b7feac2b55988526dabce5b4313c4)
Continuing:
