|
|
Line 20: |
Line 20: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 | + | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \\ |
| + | & = \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - 1 |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 16:25, 15 April 2019
Compute 

So:
![{\displaystyle {\begin{alignedat}{2}\alpha _{f}&=\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\\{\frac {q_{x}}{k}}&=\sin \theta _{f}\cos \alpha _{f}\\\theta _{f}&=\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\\q_{y}&=\cos \theta _{f}\cos \alpha _{f}-1\\&=\cos \left(\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\right)\cos \left(\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\right)-1\\&={\sqrt {1-\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]^{2}}}{\sqrt {1-\left[{\frac {q_{z}}{k}}\right]^{2}}}-1\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b68ad15d6d0852f9dcba045b5fd25117b1053c2e)
Or equivalently:
![{\displaystyle {\begin{alignedat}{2}q_{y}&={\sqrt {1-\left[{\frac {q_{x}}{k}}{\frac {1}{\sqrt {1-[q_{z}/k]^{2}}}}\right]^{2}}}{\sqrt {1-\left[{\frac {q_{z}}{k}}\right]^{2}}}-1\\&={\sqrt {1-{\frac {q_{x}^{2}}{k^{2}(1-q_{z}^{2}/k^{2})}}}}{\sqrt {1-{\frac {q_{z}^{2}}{k^{2}}}}}-1\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/47b1c507e8360aa8d8b232840499c53b97ddd50b)
Scratch/working (contains errors)
As a check of these results, consider:

Where we used:
![{\displaystyle {\begin{alignedat}{2}\sin(\arctan[u])&={\frac {u}{\sqrt {1+u^{2}}}}\\\sin \theta _{f}&=\sin(\arctan[x/d])\\&={\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {x}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fc9628f0d308053600f4e02d8f80c69fc9f356d0)
And, we further note that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos \theta _{f}&={\frac {1}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/584da470743b7feac2b55988526dabce5b4313c4)
Continuing:
