Difference between revisions of "Form Factor:Superball"
KevinYager (talk | contribs) |
KevinYager (talk | contribs) |
||
Line 1: | Line 1: | ||
A '''superball''' is a general mathematical shape that can be used to describe '''rounded cubes'''. In fact, it is a general parametrization that can describe, via a parameter <math>p</math>: | A '''superball''' is a general mathematical shape that can be used to describe '''rounded cubes'''. In fact, it is a general parametrization that can describe, via a parameter <math>p</math>: | ||
+ | * Empty space (<math>p=0.0</math>) | ||
* Concave octahedra (<math>p<0.5</math>) | * Concave octahedra (<math>p<0.5</math>) | ||
* [[Form Factor:Octahedron|Octahedra]] (<math>p=0.5</math>) | * [[Form Factor:Octahedron|Octahedra]] (<math>p=0.5</math>) |
Revision as of 11:53, 14 June 2014
A superball is a general mathematical shape that can be used to describe rounded cubes. In fact, it is a general parametrization that can describe, via a parameter Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} :
- Empty space (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=0.0} )
- Concave octahedra (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p<0.5} )
- Octahedra (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=0.5} )
- Convex octahedra (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.5<p<1} )
- Spheres (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=1} )
- Rounded cubes (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p>1} )
- Cubes (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \to \infty} )
The general equation is parametrized by the size, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} , and the curvature Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} :
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \left | \frac{x}{R} \right | ^{2p} + \left | \frac{y}{R} \right | ^{2p} + \left | \frac{z}{R} \right | ^{2p} & \le 1 \\ | x | ^{2p} + | y | ^{2p} + | z | ^{2p} & \le |R|^{2p} \\ \end{alignat} }
Obviously for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=1} , we recover the equation for a sphere. In the limit of large Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} , we obtain a cube.
Contents
Volume
The normalized volume for a superball is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ V_{\mathrm{sb}} }{R^3} = \frac{2}{2p} \mathrm{B}\left( \frac{1}{p} , \frac{2p+1}{2p} \right) \mathrm{B}\left( \frac{1}{2p} , \frac{p+1}{p} \right) }
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{B}\left( x,y \right) = \Gamma(x)\Gamma(y)/\Gamma(x+y)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(x)} is the usual Euler gamma function.
Equations
The form factor for a superball is likely not analytic. However, it can be computed numerically.
References
Mathematical descriptions of superballs
- N. D. Elkies, A. M. Odlyzko and J. A. Rush "On the packing densities of superballs and other bodies" Inventiones Mathematicae Volume 105, Number 1 (1991), 613-639, DOI: 10.1007/BF01232282
- Y. Jiao, F.H. Stillinger, S. Torquato "Optimal packings of superballs" Physical Review E 2009, 79, 041309, doi: 10.1103/PhysRevE.79.041309
Application to nanoscience
- Yugang Zhang, Fang Lu, Daniel van der Lelie, Oleg Gang "Continuous Phase Transformation in Nanocube Assemblies" Physical Review Letters 2011, 107, 135701 doi: 10.1103/PhysRevLett.107.135701