Difference between revisions of "Form Factor:Cube"

From GISAXS
Jump to: navigation, search
(Created page with "==Equations== For cubes of edge-length 2''R'' (volume <math>V_{cube}=(2R)^3</math>): ===Form Factor Amplitude=== ::<math> F_{cube}(\mathbf{q}) = \left\{ \begin{array...")
 
 
Line 1: Line 1:
 +
[[Image:Cube.png|200px|right]]
 
==Equations==
 
==Equations==
 
For cubes of edge-length 2''R'' (volume <math>V_{cube}=(2R)^3</math>):
 
For cubes of edge-length 2''R'' (volume <math>V_{cube}=(2R)^3</math>):

Latest revision as of 16:07, 13 June 2014

Cube.png

Equations

For cubes of edge-length 2R (volume ):

Form Factor Amplitude

Isotropic Form Factor Intensity

Sources

Byeongdu Lee (APS)

From Supplementary Information of: Matthew R. Jones, Robert J. Macfarlane, Byeongdu Lee, Jian Zhang, Kaylie L. Young, Andrew J. Senesi, and Chad A. Mirkin "DNA-nanoparticle superlattices formed from anisotropic building blocks" Nature Materials 9, 913-917, 2010. doi: 10.1038/nmat2870

Where 2R is the edge length of the cube, such that the volume is:

and sinc is the unnormalized sinc function:

Pedersen

From Pedersen review, Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting Jan Skov Pedersen, Advances in Colloid and Interface Science 1997, 70, 171. doi: 10.1016/S0001-8686(97)00312-6 For a rectangular parallelepipedon with edges a, b, and c:

For a cube of edge length a this would be:

Derivations

Form Factor

For a cube of edge-length 2R, the volume is:

We integrate over the interior of the cube, using Cartesian coordinates:

Such that:

Each integral is of the same form:

Which gives:

Form Factor at q=0

At small q:

Isotropic Form Factor

To average over all possible orientations, we note:

and use:

From symmetry, it is sufficient to integrate over only one of the eight octants:

Isotropic Form Factor Intensity

To average over all possible orientations, we note:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q}=(q_x,q_y,q_z)=(-q\sin\theta\cos\phi,q\sin\theta\sin\phi,q\cos\theta)}

and use:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} P_{cube}(q) & = \int\limits_{S} | F_{cube}(\mathbf{q}) |^2 \mathrm{d}\mathbf{s} \\ & = \int_{\phi=0}^{2\pi}\int_{\theta=0}^{\pi} | F_{cube}(-q\sin\theta\cos\phi,q\sin\theta\sin\phi,q\cos\theta)|^2 \sin\theta\mathrm{d}\theta\mathrm{d}\phi \\ & = V_{cube}^2 \int_{0}^{2\pi}\int_{0}^{\pi} | \mathrm{sinc}(q_x R) \mathrm{sinc}(q_y R) \mathrm{sinc}(q_z R) |^2 \sin\theta\mathrm{d}\theta\mathrm{d}\phi \\ & = V_{cube}^2 \int_{0}^{\pi} \sin\theta \left( \frac{\sin(q\cos(\theta)R)}{q \cos(\theta)R} \right)^2 \int_{0}^{2\pi} \left( \frac{\sin(-q\sin(\theta)\cos(\phi)R)}{-q \sin(\theta)\cos(\phi)R} \right)^2 \left( \frac{\sin(q\sin(\theta)\sin(\phi)R)}{q \sin(\theta)\sin(\phi)R} \right)^2 \mathrm{d}\phi \mathrm{d}\theta \\ & = \frac{V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi} \frac{\sin\theta \sin^2(q\cos(\theta)R)}{\cos^2(\theta)\sin^2(\theta)\sin^2(\theta)} \int_{0}^{2\pi} \frac{\sin^2(-q\sin(\theta)\cos(\phi)R)\sin^2(q\sin(\theta)\sin(\phi)R)} {\cos^2(\phi)\sin^2(\phi)} \mathrm{d}\phi \mathrm{d}\theta \\ & = \frac{V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi} \frac{ \sin^2(q\cos(\theta)R) }{ \sin^3(\theta)\cos^2(\theta) } \int_{0}^{2\pi} \frac{\sin^2(-q\sin(\theta)\cos(\phi)R)\sin^2(q\sin(\theta)\sin(\phi)R)} { ( \frac{1}{2} \sin(2\phi) )^2 } \mathrm{d}\phi \mathrm{d}\theta \\ \end{alignat} }

Solving integrals that involve nested trigonometric functions is not generally possible. However we can simplify in preparation for performing the integrals numerically:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} P_{cube}(q) & = \frac{V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi} \frac{ \sin^2(q_zR) }{ \sin^3(\theta)\cos^2(\theta) } \int_{0}^{2\pi} \frac{\sin^2(q_xR)\sin^2(q_yR)} { ( \frac{1}{2} \sin(2\phi) )^2 } \mathrm{d}\phi \mathrm{d}\theta \\ & = \frac{2^2 V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi} \frac{ \sin^2(q_zR) }{ \sin(\theta)(\frac{1}{2}\sin(2\theta) )^2 } \int_{0}^{2\pi} \frac{\sin^2(q_xR)\sin^2(q_yR)} { ( \sin(2\phi) )^2 } \mathrm{d}\phi \mathrm{d}\theta \\ & = \frac{16 V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi} \frac{1}{\sin\theta}\left( \frac{ \sin(q_zR) }{ \sin(2\theta) } \right)^2 \int_{0}^{2\pi} \left( \frac{\sin(q_xR)\sin(q_yR)} { \sin(2\phi) } \right)^2 \mathrm{d}\phi \mathrm{d}\theta \\ \end{alignat} }

From symmetry, it is sufficient to integrate over only one of the eight octants:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} P_{cube}(q) & = \frac{128 V_{cube}^2}{ (qR)^6 } \int_{0}^{\pi/2} \frac{1}{\sin\theta}\left( \frac{ \sin(q_zR) }{ \sin(2\theta) } \right)^2 \int_{0}^{\pi/2} \left( \frac{\sin(q_xR)\sin(q_yR)} { \sin(2\phi) } \right)^2 \mathrm{d}\phi \mathrm{d}\theta \\ \end{alignat} }

Isotropic Form Factor Intensity contribution when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} =0

The integrand of the -integral becomes:

For small Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} , the various Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\phi)} can be replaced by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} , and the various Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\phi)} can be replaced by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \lim_{\phi\to0} \left( \frac{\sin(q_xR)\sin(q_yR)} { \sin(2\phi) } \right)^2 & = \left( \frac{\sin(-q \sin(\theta)R)\sin(q \sin(\theta) \phi R)} { 2 \phi } \right)^2 \\ & = \left( \frac{\sin(-q \sin(\theta)R) q \sin(\theta) \phi R} { 2 \phi } \right)^2 \\ & = \left( \frac{\sin(-q \sin(\theta)R) q \sin(\theta) R} { 2 } \right)^2 \\ \end{alignat} }

Which is a constant (with respect to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} ). The part of the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi} -integral near Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi=0} has the contribution:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \int_{\phi=0}^{\phi=0+\delta} \left( \frac{\sin(q_xR)\sin(q_yR)} { \sin(2\phi) } \right)^2 \mathrm{d}\phi & = \left( \frac{\sin(-q \sin(\theta)R) q \sin(\theta) R} { 2 } \right)^2 \int_{\phi=0}^{\phi=0+\delta} \mathrm{d}\phi \\ & = \left( \frac{\sin(-q \sin(\theta)R) q \sin(\theta) R} { 2 } \right)^2 \delta \\ \end{alignat} }

Isotropic Form Factor Intensity at q=0

At very small q:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} P_{cube}(0) & = V_{cube}^2 \int_{\phi=0}^{2\pi}\int_{\theta=0}^{\pi}\sin\theta\mathrm{d}\theta\mathrm{d}\phi \\ & = 4\pi V_{cube}^2 \\ \end{alignat} }