Difference between revisions of "Talk:Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(Compute q_y)
(Compute q_y)
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
 
\frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\
 
\frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\
 
\theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\
 
\theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\
q_y & = \cos \theta_f \cos \alpha_f - 1 \\
+
\frac{q_y}{k} & = \cos \theta_f \cos \alpha_f - 1 \\
& = \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \\
+
q_y & = k \left ( \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \right )\\
  & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1
+
  & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right )
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Line 20: Line 20:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1
+
q_y & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) \\
 +
    & = k \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - k
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Latest revision as of 16:29, 15 April 2019

Compute

So:

Or equivalently:

Scratch/working (contains errors)

As a check of these results, consider:

Where we used:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\ \sin \theta_f & = \sin( \arctan [x/d] ) \\ & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\ & = \frac{x}{\sqrt{d^2+x^2}} \end{alignat} }

And, we further note that:

Continuing: