|
|
| Line 135: |
Line 135: |
| | \begin{matrix} | | \begin{matrix} |
| | & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ | | & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ |
| − | (T_i T_f) & |T_i T_f|^2 & T_i T_i^* T_f R_f^* & T_i R_i^* T_f T_f^* & T_i R_i^* T_f R_f^* \\ | + | (T_i T_f) & |T_i T_f|^2 & |T_i|^2 T_f R_f^* & T_i R_i^* |T_f|^2 & T_i R_i^* T_f R_f^* \\ |
| − | (T_i R_f) & T_i T_i^* T_f^* R_f & |T_i R_f|^2 & T_i R_i^* T_f^* R_f & T_i R_i^* R_f R_f^* \\ | + | (T_i R_f) & |T_i|^2 T_f^* R_f & |T_i R_f|^2 & T_i R_i^* T_f^* R_f & T_i R_i^* |R_f|^2 \\ |
| − | (R_i T_f) & T_i^* R_i T_f T_f^* & T_i^* R_i T_f R_f^* & |R_i T_f|^2 & R_i R_i^* T_f R_f^* \\ | + | (R_i T_f) & T_i^* R_i |T_f|^2 & T_i^* R_i T_f R_f^* & |R_i T_f|^2 & |R_i|^2 T_f R_f^* \\ |
| − | (R_i R_f) & T_i^* R_i T_f^* R_f & T_i^* R_i R_f R_f^* & R_i R_i^* T_f^* R_f & | R_i R_f |^2 \\ | + | (R_i R_f) & T_i^* R_i T_f^* R_f & T_i^* R_i |R_f|^2 & |R_i|^2 T_f^* R_f & | R_i R_f |^2 \\ |
| | \end{matrix} | | \end{matrix} |
| | | | |
Revision as of 17:41, 12 March 2018
DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)}
for compactness, the DWBA equation inside a thin film can be written:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ \end{align} }
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ (T_i T_f) & T_i T_i^* T_f T_f^* & T_i T_i^* T_f R_f^* & T_i R_i^* T_f T_f^* & T_i R_i^* T_f R_f^* \\ (T_i R_f) & T_i T_i^* T_f^* R_f & T_i T_i^* R_f R_f^* & T_i R_i^* T_f^* R_f & T_i R_i^* R_f R_f^* \\ (R_i T_f) & T_i^* R_i T_f T_f^* & T_i^* R_i T_f R_f^* & R_i R_i^* T_f T_f^* & R_i R_i^* T_f R_f^* \\ (R_i R_f) & T_i^* R_i T_f^* R_f & T_i^* R_i R_f R_f^* & R_i R_i^* T_f^* R_f & R_i R_i^* R_f R_f^* \\ \end{matrix} }
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel
and reflected channel
:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\ & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ \end{align} }
We define the ratio between the channels to be:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } \end{align} }
Such that one can compute the two components from:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }
and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} \end{align} }