Difference between revisions of "Talk:Extra:Intersecting planes"
KevinYager (talk | contribs) (Created page with "==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>== In general, rotation of a vector <math>\scriptstyle \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x...") |
KevinYager (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | ==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{1}</math>== | ||
+ | In general, rotation of a vector <math>\scriptstyle | ||
+ | \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x & y & z \end{bmatrix}</math>about an arbitrary unit-vector <math>\scriptstyle | ||
+ | \mathbf{n} = \begin{bmatrix} u & v & w \end{bmatrix}</math> gives ([https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle 1], [http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/ 2]): | ||
+ | ::<math> | ||
+ | \mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +vy+wz)(1-\cos \theta) + x \cos \theta + (-wy+vz)\sin \theta \\ | ||
+ | v(ux+vy+wz)(1 - \cos \theta) + y \cos \theta + (wx-uz) \sin \theta\\ | ||
+ | w(ux+vy+wz)(1-\cos \theta) + z \cos \theta + (-vx+uy) \sin \theta \end{bmatrix} | ||
+ | </math> | ||
+ | In this particular case, we thus expect: | ||
+ | ::<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathbf{v}_{2} & = \begin{bmatrix} -y\sin \phi \\ | ||
+ | y \cos \phi \\ | ||
+ | z(1-\cos \phi) + z \cos \phi\end{bmatrix} | ||
+ | \\ | ||
+ | & = \begin{bmatrix} -q \cos \alpha\sin \phi \\ | ||
+ | q \cos \alpha \cos \phi \\ | ||
+ | q \sin \alpha(1-\cos \phi) + q \sin \alpha \cos \phi\end{bmatrix} | ||
+ | \\ | ||
+ | & = q \begin{bmatrix} - \cos \alpha\sin \phi \\ | ||
+ | \cos \alpha \cos \phi \\ | ||
+ | \sin \alpha\end{bmatrix} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | |||
+ | |||
==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>== | ==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>== | ||
Revision as of 18:52, 21 December 2015
Rotate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{2b}} about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{n}_{1}}
In general, rotation of a vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x & y & z \end{bmatrix}} about an arbitrary unit-vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{n} = \begin{bmatrix} u & v & w \end{bmatrix}} gives (1, 2):
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +vy+wz)(1-\cos \theta) + x \cos \theta + (-wy+vz)\sin \theta \\ v(ux+vy+wz)(1 - \cos \theta) + y \cos \theta + (wx-uz) \sin \theta\\ w(ux+vy+wz)(1-\cos \theta) + z \cos \theta + (-vx+uy) \sin \theta \end{bmatrix} }
In this particular case, we thus expect:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{2} & = \begin{bmatrix} -y\sin \phi \\ y \cos \phi \\ z(1-\cos \phi) + z \cos \phi\end{bmatrix} \\ & = \begin{bmatrix} -q \cos \alpha\sin \phi \\ q \cos \alpha \cos \phi \\ q \sin \alpha(1-\cos \phi) + q \sin \alpha \cos \phi\end{bmatrix} \\ & = q \begin{bmatrix} - \cos \alpha\sin \phi \\ \cos \alpha \cos \phi \\ \sin \alpha\end{bmatrix} \end{alignat} }
Rotate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{2b}} about Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{n}_{2}}
In general, rotation of a vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x & y & z \end{bmatrix}} about an arbitrary unit-vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{n} = \begin{bmatrix} u & v & w \end{bmatrix}} gives (1, 2):
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +vy+wz)(1-\cos \theta) + x \cos \theta + (-wy+vz)\sin \theta \\ v(ux+vy+wz)(1 - \cos \theta) + y \cos \theta + (wx-uz) \sin \theta\\ w(ux+vy+wz)(1-\cos \theta) + z \cos \theta + (-vx+uy) \sin \theta \end{bmatrix} }
In this particular case, we thus expect:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{2} & = \begin{bmatrix} (-wy+vz)\sin \phi \\ v(vy+wz)(1 - \cos \phi) + y \cos \phi \\ w(vy+wz)(1-\cos \phi) + z \cos \phi\end{bmatrix} \\ & = \begin{bmatrix} (- \cos\alpha q \cos\alpha + -\sin\alpha q \sin\alpha)\sin \phi \\ -\sin\alpha(-\sin\alpha q \cos\alpha+\cos\alpha q \sin\alpha)(1 - \cos \phi) + q \cos\alpha \cos \phi \\ \cos\alpha(-\sin\alpha q \cos\alpha+ \cos\alpha q \sin\alpha)(1-\cos \phi) + q \sin\alpha \cos \phi\end{bmatrix} \\ & = q \begin{bmatrix} -(\cos^2 \alpha +\sin ^2 \alpha)\sin \phi \\ \sin^2 \alpha(\cos\alpha-\cos\alpha )(1 - \cos \phi) + \cos\alpha \cos \phi \\ \cos^2 \alpha(-\sin\alpha + \sin\alpha)(1-\cos \phi) + \sin\alpha \cos \phi\end{bmatrix} \\ & = q \begin{bmatrix} -\sin \phi \\ \cos\alpha \cos \phi \\ \sin\alpha \cos \phi\end{bmatrix} \end{alignat} }