Difference between revisions of "Geometry:TSAXS 3D"
KevinYager (talk | contribs) (→Alternate check) |
KevinYager (talk | contribs) (→Check) |
||
| Line 142: | Line 142: | ||
</math> | </math> | ||
And: | And: | ||
| + | :<math> | ||
| + | \begin{alignat}{2} | ||
| + | & \left( 1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ | ||
| + | = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f}+\frac{\cos^2 \alpha_f \sin^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ | ||
| + | = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f}{\cos^2 \alpha_f \cos^2 \theta_f} \right) ^{-1/2} \\ | ||
| + | = & \left( \frac{\cos^2 \theta_f \cos^2 \alpha_f }{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f} \right) ^{+1/2} \\ | ||
| + | = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }} \\ | ||
| + | = & \cos \theta_f \cos \alpha_f | ||
| + | \end{alignat} | ||
| + | </math> | ||
Revision as of 11:48, 30 December 2015
In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:
This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .
Contents
Total scattering
The full scattering angle is defined by a right-triangle with base d and height :
The total momentum transfer is:
Given that:
We can also write:
Where we take for granted that q must be positive.
In-plane only
If (and ), then , , and:
The other component can be thought of in terms of the sides of a right-triangle with angle :
Summarizing:
Out-of-plane only
If , then , , and:
The components are:
Summarizing:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \frac{2 \pi}{\lambda} \begin{bmatrix} 0 \\ \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} }
Components
The momentum transfer components are:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f \end{alignat} }
In vector form:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q} = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} }
Total magnitude
Note that this provides a simple expression for q total:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ \left( \frac{q}{k} \right)^2 & = \sin^2 \theta_f \cos^2 \alpha_f + \cos^2 \theta_f \cos^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 + \sin^2 \alpha_f \\ & = \cos^2 \alpha_f (\sin^2 \theta_f + \cos^2 \theta_f) +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\ & = \cos^2 \alpha_f (1) +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\ & = 2 -2 \cos \theta_f \cos \alpha_f \\ q & = \sqrt{2}k \sqrt{ 1 - \cos \theta_f \cos \alpha_f } \\ \end{alignat} }
Check
As a check of these results, consider:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ \left( \frac{q}{k} \right)^2 & = \frac{4}{2} \left( 1-\cos 2\theta_s \right) \\ & = 2 \left( 1-\frac{1}{\sqrt{1+\left( \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right) ^2}} \right) \\ & = 2 \left( 1-\frac{1}{\sqrt{1+\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } }} \right) \\ & = 2-\frac{2}{\sqrt{1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } }} \\ \end{alignat} }
And:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} & \left( 1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f}+\frac{\cos^2 \alpha_f \sin^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f}{\cos^2 \alpha_f \cos^2 \theta_f} \right) ^{-1/2} \\ = & \left( \frac{\cos^2 \theta_f \cos^2 \alpha_f }{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f} \right) ^{+1/2} \\ = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }} \\ = & \cos \theta_f \cos \alpha_f \end{alignat} }