|
|
| Line 158: |
Line 158: |
| | | | |
| | & \begin{align} | | & \begin{align} |
| − | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + T_i^2 T_f R_f F_{+1}F_{-2}^* \\ | + | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + |T_i|^2 T_f R_f F_{+1}F_{-2}^* \\ |
| − | & && + T_i R_i T_f^2 F_{+1}F_{+2}^* + T_i R_i T_f R_f F_{+1} F_{-1}^* \\ | + | & && + T_i R_i |T_f|^2 F_{+1}F_{+2}^* + T_i R_i T_f R_f F_{+1} F_{-1}^* \\ |
| | | | |
| − | & + |T_i R_f|^2 | F_{-2} |^2 && + T_i^2T_fR_f F_{+1}^* F_{-2} \\ | + | & + |T_i R_f|^2 | F_{-2} |^2 && + |T_i|^2T_fR_f F_{+1}^* F_{-2} \\ |
| − | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + T_i R_i R_f^2 F_{-1}^* F_{-2} \\ | + | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + T_i R_i |R_f|^2 F_{-1}^* F_{-2} \\ |
| | | | |
| − | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i R_i T_f^2 F_{+1}^* F_{+2} \\ | + | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i R_i |T_f|^2 F_{+1}^* F_{+2} \\ |
| − | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + R_i^2 T_f R_f F_{-1}^* F_{+2} \\ | + | & && + T_i R_i T_f R_f F_{+2}^*F_{-2} + |R_i|^2 T_f R_f F_{-1}^* F_{+2} \\ |
| | | | |
| | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i R_i T_f R_f F_{+1}^* F_{-1} \\ | | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i R_i T_f R_f F_{+1}^* F_{-1} \\ |
| − | & && + T_i R_i R_f^2 F_{-1}F_{-2}^* + R_i^2 T_f R_f F_{-1} F_{+2}^* \\ | + | & && + T_i R_i |R_f|^2 F_{-1}F_{-2}^* + |R_i|^2 T_f R_f F_{-1} F_{+2}^* \\ |
| | | | |
| | \end{align} \\ | | \end{align} \\ |
| Line 174: |
Line 174: |
| | \end{align} | | \end{align} |
| | </math> | | </math> |
| | + | |
| | + | ===Simplification=== |
| | + | We can rearrange to: |
| | | | |
| | ==Breaking into components== | | ==Breaking into components== |
DWBA Equation in thin film
Using the notation
for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} & (T_i T_f) & (T_i R_f) & (R_i T_f) & (R_i R_f) \\ (T_i T_f) & T_i^2T_f^2 & T_i^2 T_f R_f & T_iR_iT_f^2 & T_iR_iT_fR_f \\ (T_i R_f) & T_i^2T_fR_f & T_i^2R_f^2 & T_iR_iT_fR_f & T_iR_iR_f^2 \\ (R_i T_f) & T_iR_iT_f^2 & T_iR_iT_fR_f & R_i^2T_f^2 & R_i^2T_fR_f \\ (R_i R_f) & T_iR_iT_fR_f & T_iR_iR_f^2 & R_i^2T_fR_f & R_i^2R_f^2 \\ \end{matrix} }
Equation
The equation can thus be expanded as:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = | T_i T_f F(+Q_{z1}) + T_i R_f F(-Q_{z2}) + R_i T_f F(+Q_{z2}) + R_i R_f F(-Q_{z1}) | ^{2} \\ & \begin{align} = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ & && + T_i R_i T_f^2 F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ & + R_i^2 T_f^2 | F(+Q_{z2}) |^2 && + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ & + R_i^2 R_f^2 | F(-Q_{z1}) |^2 && + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ & && + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ \end{align} \\ \end{align} }
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation
and
:
Expansion
Terms
If one expands the
of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation
and
. The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
Breaking into components
The experimental data
can be broken into contributions from the transmitted channel
and reflected channel
:
We define the ratio between the channels to be:
Such that one can compute the two components from:
and: