Difference between revisions of "Talk:DWBA"
KevinYager (talk | contribs) (→Expansion) |
KevinYager (talk | contribs) (→Breaking into components) |
||
| Line 240: | Line 240: | ||
==Breaking into components== | ==Breaking into components== | ||
| − | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,Tc}(qz)</math> and reflected channel <math>I_{d,Rc}(qz)</math>: | + | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,\mathrm{Tc}}(qz)</math> and reflected channel <math>I_{d,\mathrm{Rc}}(qz)</math>: |
<math> | <math> | ||
| Line 246: | Line 246: | ||
I_d(q_{z}) | I_d(q_{z}) | ||
& = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ | ||
| − | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,Tc}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,Rc}) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Tc}}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Rc}}) \\ |
| − | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,\mathrm{Tc}}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,\mathrm{Rc}}(q_z) \\ |
| − | & = |Tc|^2 I_{d,Tc}(q_z) + |Rc|^2 I_{d,Rc}(q_z) \\ | + | & = |Tc|^2 I_{d,\mathrm{Tc}}(q_z) + |Rc|^2 I_{d,\mathrm{Rc}}(q_z) \\ |
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 256: | Line 256: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
| − | w | + | w (q_z) |
| − | & = \frac{ I_{d,Tc}(q_z) }{ I_{d,Tc}(q_z) + I_{d,Rc}(q_z) } | + | & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) } |
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 265: | Line 265: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
| − | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 ( I_{d,Rc}(q_z) ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
| − | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,Tc}(q_z) - w I_{d,Tc}(q_z) }{w} \right ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w} \right ) \\ |
| − | I_d(q_{z}) & = I_{d,Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ | + | I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ |
| − | I_{d,Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ | + | I_{d,\mathrm{Tc}}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ |
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 277: | Line 277: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
| − | I_{d,Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,Tc}(q_z) }{|Rc|^2} | + | I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ |
| + | & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) | ||
| + | \end{align} | ||
| + | </math> | ||
| + | |||
| + | or: | ||
| + | |||
| + | <math> | ||
| + | \begin{align} | ||
| + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ | ||
| + | & = |Tc|^2 \left( \frac{w}{1-w} I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ | ||
| + | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 09:17, 5 April 2018
Contents
DWBA Equation in thin film
Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) = \,\, & T_i^2 T_f^2 | F_{+1} |^2 + T_i^2 R_f^2 | F_{-2} |^2 + R_i^2 T_f^2 | F_{+2} |^2 + R_i^2 R_f^2 | F_{-1} |^2 \\ & + 2 \times T_i^2T_fR_f F_{+1}F_{-2} + 2 \times T_iR_iT_f^2 F_{+1}F_{+2} \\ & + 2 \times T_i R_i T_f R_f [ F_{+1}F_{-1} + F_{+2}F_{-2} ] \\ & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} + 2 \times R_i^2T_fR_f F_{-1}F_{+2} \end{align} }
Expansion
Terms
If one expands the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |...|^2} of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{+1} = F(+Q_{z1})} . The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ & + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\ & + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\ & + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\ & + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^*\\ & + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\ & + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} \\ & + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} \\ & + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\ = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ & + |T_i|^2 [ T_f R_f^* F_{+1}F_{-2}^* + T_f^*R_f F_{+1}^* F_{-2} ] \\ & + |T_f|^2 [ T_i R_i^* F_{+1}F_{+2}^* + T_i^* R_i F_{+1}^* F_{+2} ] \\ & + |R_i|^2 [ T_f R_f^* F_{-1}^* F_{+2} + T_f^* R_f F_{-1} F_{+2}^* ] \\ & + |R_f|^2 [ T_i R_i^* F_{-1}^* F_{-2} + T_i^* R_i F_{-1}F_{-2}^* ]\\ & + [ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} ] \\ & + [ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} ] \\ \end{align} }
We define , and note that for any complex number , it is true that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c+c^*=2 \mathrm{Re}[c]} . Thus:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\ & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\ & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\ & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ \end{align} }
Breaking into components
The experimental data Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_d(q_z)} can be broken into contributions from the transmitted channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{d,\mathrm{Tc}}(qz)} and reflected channel Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{d,\mathrm{Rc}}(qz)} :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Tc}}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Rc}}) \\ & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,\mathrm{Tc}}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,\mathrm{Rc}}(q_z) \\ & = |Tc|^2 I_{d,\mathrm{Tc}}(q_z) + |Rc|^2 I_{d,\mathrm{Rc}}(q_z) \\ \end{align} }
We define the ratio between the channels to be:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w (q_z) & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) } \end{align} }
Such that one can compute the two components from:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{d,\mathrm{Tc}}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }
and:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) \end{align} }
or:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ & = |Tc|^2 \left( \frac{w}{1-w} I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ \end{align} }