Difference between revisions of "AI Agents"

From GISAXS
Jump to: navigation, search
(Naive multi-LLM (verification, majority voting, best-of-N, etc.))
(Agent Internal Workflow Management)
Line 24: Line 24:
 
* [https://github.com/pydantic/pydantic-ai Pydantic: Agent Framework / shim to use Pydantic with LLMs]
 
* [https://github.com/pydantic/pydantic-ai Pydantic: Agent Framework / shim to use Pydantic with LLMs]
 
* [https://github.com/lmnr-ai/flow Flow: A lightweight task engine for building AI agents that prioritizes simplicity and flexibility]
 
* [https://github.com/lmnr-ai/flow Flow: A lightweight task engine for building AI agents that prioritizes simplicity and flexibility]
 +
* [https://llama-stack.readthedocs.io/en/latest/index.html llama-stack]
  
 
===Information Retrieval===
 
===Information Retrieval===

Revision as of 10:17, 23 December 2024

Contents

Reviews & Perspectives

Published

Continually updating

Analysis/Opinions

AI Assistants

Components of AI Assistants

Agent Internal Workflow Management

Information Retrieval

Control (tool-use, computer use, etc.)

Open-source

Personalities/Personas

Specific Uses for AI Assistants

Computer Use

Software Engineering

Science Agents

See Science Agents.

LLM-as-judge

Advanced Workflows

Software Development Workflows

Several paradigms of AI-assisted coding have arisen:

  1. Manual, human driven
  2. AI-aided through chat/dialogue, where the human asks for code and then copies it into the project
    1. OpenAI ChatGPT
    2. Anthropic Claude
  3. API calls to an LLM, which generates code and inserts the file into the project
  4. LLM-integration into the IDE
    1. Copilot
    2. Qodo (Codium) & AlphaCodium (preprint, code)
    3. Cursor
    4. Codeium Windsurf (with "Cascade" AI Agent)
  5. AI-assisted IDE, where the AI generates and manages the dev environment
    1. Replit
    2. Aider (code): Pair programming on commandline
    3. Pythagora
    4. StackBlitz bolt.new
    5. Cline (formerly Claude Dev)
  6. Prompt-to-product
    1. Github Spark (demo video)
  7. Semi-autonomous software engineer agents
    1. Devin (Cognition AI)
    2. Amazon Q
    3. Honeycomb

For a review of the current state of software-engineering agentic approaches, see:

Corporate AI Agent Ventures

Mundane Workflows and Capabilities

Inference-compute Reasoning

Agentic Systems

Increasing AI Agent Intelligence

Reviews

Prompt Engineering

Proactive Search

Compute expended after training, but before inference.

Training Data (Data Refinement, Synthetic Data)

Generate consistent plans/thoughts

  • 2024-08: Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers (code)
    • (Microsoft) rStar is a self-play mutual reasoning approach. A small model adds to MCTS using some defined reasoning heuristics. Mutually consistent trajectories can be emphasized.
  • 2024-09: Self-Harmonized Chain of Thought
    • Produce refined chain-of-thought style solutions/prompts for diverse problems. Given a large set of problems/questions, first aggregated semantically, then apply zero-shot chain-of-thought to each problem. Then cross-pollinate between proposed solutions to similar problems, looking for refined and generalize solutions.
  • 2024-11: LLMs Do Not Think Step-by-step In Implicit Reasoning
    • They argue that models trained to reproduce CoT outputs do not, internally, perform stepwise reasoning (with intermediate representations); this suggests that explicit CoT could be superior to implicit CoT.

Sampling

Automated prompt generation

Distill inference-time-compute into model

CoT reasoning model

Scaling

Inference Time Compute

Methods

Review

In context learning (ICL), search, and other inference-time methods

Inference-time Sampling

Inference-time Gradient

Self-prompting

In-context thought

Naive multi-LLM (verification, majority voting, best-of-N, etc.)

Multi-LLM (multiple comparisons, branching, etc.)

Iteration (e.g. neural-like layered blocks)

Iterative reasoning via graphs

Monte Carlo Tree Search (MCTS)

Other Search

Scaling

Theory

Expending compute works

Compute.png

Code for Inference-time Compute

  • optillm: Inference proxy which implements state-of-the-art techniques to improve accuracy and performance of LLMs (improve reasoning over coding, logical and mathematical queries)

Memory

Tool Use

Multi-agent Effort (and Emergent Intelligence)

ML-like Optimization of LLM Setup

Multi-agent orchestration

Research

Societies and Communities of AI agents

Research demos

Related work

Inter-agent communications

Architectures

Open Source Frameworks

Open Source Systems

Commercial Automation Frameworks

Spreadsheet

Cloud solutions

Frameworks

Optimization

Metrics, Benchmarks

Multi-agent

Agent Challenges

  • Aidan-Bench: Test creativity by having a particular LLM generate long sequence of outputs (meant to be different), and measuring how long it can go before duplications appear.
  • Pictionary: LLM suggests prompt, multiple LLMs generate outputs, LLM judges; allows raking of the generation abilities.
  • MC-bench: Request LLMs to build an elaborate structure in Minecraft; outputs can be A/B tested by human judges.

Automated Improvement

See Also