In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position
. The scattering angles are then:
![{\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/facc9ad57cd58f15e7403d40dc08f08815d3662b)
where
is the sample-detector distance,
is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and
is the in-plane component (rotation about z-axis). The alternate angle,
, is the elevation angle in the plane defined by
.
Total scattering
The full scattering angle is:
![{\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce190aa4f7dd836349234c33033cb245c49d4f20)
The total momentum transfer is:
![{\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&={\frac {4\pi }{\lambda }}\sin \left({\frac {1}{2}}\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/978ccef9bfce6510674b68221b9f287f94e0bc79)
Given that:
![{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos(2\theta _{s})&={\frac {1}{\sqrt {1+({\sqrt {x^{2}+z^{2}}}/d)^{2}}}}\\&={\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a031cc7bdbb545bcbf2e5d51b1899f74c01e74)
We can also write:

Where we take for granted that q must be positive.
In-plane only
If
(and
), then
,
, and:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q = k \sin \theta_f }
Components
The momentum transfer components are:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\ q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\ q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f \end{alignat} }
Check
As a check of these results, consider:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\ & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ \frac{q}{k} & = \sqrt{ (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 } \\ \frac{q^2}{k^2} & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\ & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \end{alignat} }
Where we used:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\ \sin \theta_f & = \sin( \arctan [x/d] ) \\ & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\ & = \frac{x}{\sqrt{d^2+x^2}} \end{alignat} }
And, we further note that:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\ & = \frac{d^2}{\sqrt{d^2+x^2}} \end{alignat} }
cont
Continuing:
![{\displaystyle {\begin{alignedat}{2}{\frac {q^{2}}{k^{2}}}&={\frac {x^{2}}{d^{2}+x^{2}}}{\frac {d^{4}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}+\left({\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}{\frac {d^{2}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\right)^{2}+{\frac {z^{2}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}{\frac {d^{4}}{d^{2}+x^{2}}}\\&=d^{4}{\frac {x^{2}+z^{2}}{(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}+\left({\frac {d^{4}}{\sqrt {(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}}-1\right)^{2}\\&={\frac {d^{4}x^{2}+d^{4}z^{2}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}+\left({\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}-1\right)^{2}\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+\left({\frac {d^{8}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}-2{\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}+1\right)\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+{\frac {d^{6}}{d^{2}+x^{2}+d^{2}z^{2}}}-2{\frac {d^{3}}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}}+1\\&={\frac {d^{2}x^{2}+d^{2}z^{2}+d^{6}-2d^{3}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}+d^{2}+x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}\\&={\frac {d^{6}+d^{2}+d^{2}x^{2}+x^{2}+2d^{2}z^{2}-2d^{3}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}}{d^{2}+x^{2}+d^{2}z^{2}}}\\&={\frac {(x^{2}+z^{2})}{(d^{2}+x^{2}+z^{2})}}{\frac {(d^{2}+x^{2}+z^{2})}{(x^{2}+z^{2})}}{\frac {d^{6}+d^{2}(1+x^{2}+2z^{2})+x^{2}-2d^{3}{\sqrt {d^{2}(1+z^{2})+x^{2}}}}{d^{2}(1+z^{2})+x^{2}}}\\&=?\\&={\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}\\{\frac {q}{k}}&={\sqrt {\frac {x^{2}+z^{2}}{d^{2}+x^{2}+z^{2}}}}\\&={\frac {\sqrt {x^{2}+z^{2}}}{\sqrt {d^{2}+x^{2}+z^{2}}}}\\&={\frac {\left[{\sqrt {x^{2}+z^{2}}}/d\right]}{\sqrt {1+\left[{\sqrt {x^{2}+z^{2}}}/d\right]^{2}}}}\\&=\sin \left(\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\right)\\q&={\frac {2\pi }{\lambda }}\sin \left(2\theta _{s}\right)\end{alignedat}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1ec9f3c8b23c8d667e098945bc49229940656e47)