Geometry:TSAXS 3D
In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:
This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle (x,z)} . The scattering angles are then:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\theta _{f}&=\arctan \left[{\frac {x}{d}}\right]\\\alpha _{f}^{\prime }&=\arctan \left[{\frac {z}{d}}\right]\\\alpha _{f}&=\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\end{alignedat}}}
where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle d} is the sample-detector distance, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }} is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \theta _{f}} is the in-plane component (rotation about z-axis). The alternate angle, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}} , is the elevation angle in the plane defined by Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \theta _{f}} .
Contents
Total scattering
The full scattering angle is defined by a right-triangle with base d and height :
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}2\theta _{s}=\Theta &=\arctan \left[{\frac {\sqrt {x^{2}+z^{2}}}{d}}\right]\\&=\arctan \left[{\frac {\sqrt {(d\tan \theta _{f})^{2}+(d\tan \alpha _{f}^{\prime })^{2}}}{d}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+\tan ^{2}\alpha _{f}^{\prime }}}\right]\\&=\arctan \left[{\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right]\\\end{alignedat}}}
The total momentum transfer is:
Given that:
We can also write:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&=\pm {\frac {4\pi }{\lambda }}{\sqrt {\frac {1-\cos 2\theta _{s}}{2}}}\\&={\frac {4\pi }{\lambda }}{\sqrt {{\frac {1}{2}}\left(1-{\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\right)}}\\&={\sqrt {2}}{\frac {2\pi }{\lambda }}{\sqrt {1-{\frac {d}{\sqrt {x^{2}+d^{2}+z^{2}}}}}}\end{alignedat}}}
Where we take for granted that q must be positive.
In-plane only
If (and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }=0} ), then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle q_{z}=0} , Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle 2\theta _{s}=\theta _{f}} , and:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q&=2k\sin \left(\theta _{f}/2\right)\\&=2k{\sqrt {\frac {1-\cos(\theta _{f})}{2}}}\\&=2k{\sqrt {{\frac {1}{2}}\left(1-{\frac {1}{\sqrt {1+(x/d)^{2}}}}\right)}}\\&=2k{\sqrt {{\frac {1}{2}}\left(1-{\frac {d}{\sqrt {d^{2}+x^{2}}}}\right)}}\end{alignedat}}}
The other component can be thought of in terms of the sides of a right-triangle with angle :
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q_{x}&=q\cos(\theta _{f}/2)\\&=2k\sin(\theta _{f}/2)\cos(\theta _{f}/2)\\&=k\sin(\theta _{f})\\q_{y}&=-q\sin(\theta _{f}/2)\\&=-2k\sin(\theta _{f}/2)\sin(\theta _{f}/2)\\&=-k\left(1-\cos \theta _{f}\right)\\&=k\left(\cos \theta _{f}-1\right)\\\end{alignedat}}}
Summarizing:
Out-of-plane only
If , then Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle q_{x}=0} , Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \scriptstyle \alpha _{f}^{\prime }=\alpha _{f}=2\theta _{s}} , and:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q&=2k\sin \left(\alpha _{f}/2\right)\\&=2k{\sqrt {\frac {1-\cos(\alpha _{f})}{2}}}\\&=2k{\sqrt {{\frac {1}{2}}\left(1-{\frac {d}{\sqrt {d^{2}+z^{2}}}}\right)}}\end{alignedat}}}
The components are:
Summarizing:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbf {q} ={\frac {2\pi }{\lambda }}{\begin{bmatrix}0\\\cos \alpha _{f}-1\\\sin \alpha _{f}\end{bmatrix}}}
Components (angular)
For arbitrary 3D scattering vectors, the momentum transfer components are:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q_{x}&={\frac {2\pi }{\lambda }}\sin \theta _{f}\cos \alpha _{f}\\q_{y}&={\frac {2\pi }{\lambda }}\left(\cos \theta _{f}\cos \alpha _{f}-1\right)\\q_{z}&={\frac {2\pi }{\lambda }}\sin \alpha _{f}\end{alignedat}}}
In vector form:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \mathbf {q} ={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \theta _{f}\cos \alpha _{f}\\\cos \theta _{f}\cos \alpha _{f}-1\\\sin \alpha _{f}\end{bmatrix}}}
Total magnitude
Note that this provides a simple expression for q total:
Check
As a check of these results, consider:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\\&={\frac {4\pi }{\lambda }}{\sqrt {\frac {1-\cos 2\theta _{s}}{2}}}\\\left({\frac {q}{k}}\right)^{2}&={\frac {4}{2}}\left(1-\cos 2\theta _{s}\right)\\&=2\left(1-{\frac {1}{\sqrt {1+\left({\sqrt {\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}\right)^{2}}}}\right)\\&=2\left(1-{\frac {1}{\sqrt {1+\tan ^{2}\theta _{f}+{\frac {\tan ^{2}\alpha _{f}}{\cos ^{2}\theta _{f}}}}}}\right)\\&=2-{\frac {2}{\sqrt {1+{\frac {\sin ^{2}\theta _{f}}{\cos ^{2}\theta _{f}}}+{\frac {\sin ^{2}\alpha _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}}}}\\\end{alignedat}}}
And:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}&\left(1+{\frac {\sin ^{2}\theta _{f}}{\cos ^{2}\theta _{f}}}+{\frac {\sin ^{2}\alpha _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}\right)^{-1/2}\\=&\left({\frac {\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}+{\frac {\cos ^{2}\alpha _{f}\sin ^{2}\theta _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}+{\frac {\sin ^{2}\alpha _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}\right)^{-1/2}\\=&\left({\frac {\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}+\cos ^{2}\alpha _{f}\sin ^{2}\theta _{f}+\sin ^{2}\alpha _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}}}\right)^{-1/2}\\=&\left({\frac {\cos ^{2}\theta _{f}\cos ^{2}\alpha _{f}}{\cos ^{2}\alpha _{f}\cos ^{2}\theta _{f}+\cos ^{2}\alpha _{f}\sin ^{2}\theta _{f}+\sin ^{2}\alpha _{f}}}\right)^{+1/2}\\=&{\frac {\cos \theta _{f}\cos \alpha _{f}}{\sqrt {\cos ^{2}\alpha _{f}(\cos ^{2}\theta _{f}+\sin ^{2}\theta _{f})+\sin ^{2}\alpha _{f}}}}\\=&\cos \theta _{f}\cos \alpha _{f}\end{alignedat}}}
Components (distances)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\mathbf {q} &={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \theta _{f}\cos \alpha _{f}\\\cos \theta _{f}\cos \alpha _{f}-1\\\sin \alpha _{f}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}\sin \left(\arctan \left[{\frac {x}{d}}\right]\right)\cos \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)\\\cos \left(\arctan \left[{\frac {x}{d}}\right]\right)\cos \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)-1\\\sin \left(\arctan \left[{\frac {z}{d/\cos \theta _{f}}}\right]\right)\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {x/d}{\sqrt {1+\left(x/d\right)^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\\{\frac {1}{\sqrt {1+\left(x/d\right)^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\\{\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {xd}{\sqrt {d^{2}+x^{2}}}}{\frac {1}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\\{\frac {d}{\sqrt {d^{2}+x^{2}}}}{\frac {d}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\\{\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\end{bmatrix}}\\\end{alignedat}}}
Note that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \cos \theta _{f}=d/{\sqrt {d^{2}+x^{2}}}} , and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos^2 \theta_f = d^2/(d^2+x^2)} so:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }} & = \frac{1}{\sqrt{d^2+z^2 \left( d^2/(d^2+x^2) \right) }} \\ & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2)/(d^2+x^2) }} \\ & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} \\ \end{alignat} }
And:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{alignedat}{2}\mathbf {q} &={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {xd}{\sqrt {d^{2}+x^{2}}}}{\frac {\sqrt {d^{2}+x^{2}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}\\{\frac {d}{\sqrt {d^{2}+x^{2}}}}{\frac {d{\sqrt {d^{2}+x^{2}}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}-1\\{\frac {z\left(d/{\sqrt {d^{2}+x^{2}}}\right){\sqrt {d^{2}+x^{2}}}}{d{\sqrt {d^{2}+x^{2}+z^{2}}}}}\end{bmatrix}}\\&={\frac {2\pi }{\lambda }}{\begin{bmatrix}{\frac {x}{\sqrt {x^{2}+d^{2}+z^{2}}}}\\{\frac {d}{\sqrt {x^{2}+d^{2}+z^{2}}}}-1\\{\frac {z}{\sqrt {x^{2}+d^{2}+z^{2}}}}\end{bmatrix}}\\\end{alignedat}}}
Total magnitude
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}}\begin{alignat}{2} \left( \frac{q}{k} \right)^2 & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 } }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 \\ & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\ & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2 \right) + z^2 }{x^2 + d^2 + z^2} \\ & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ & = 2 \left( 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right) \\ q & = \sqrt{2}k \sqrt{1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} } \end{alignat} }