Talk:Extra:Intersecting planes
Revision as of 18:52, 21 December 2015 by KevinYager (talk | contribs)
Rotate about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
Rotate about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{alignat}{2} \mathbf{v}_{2} & = \begin{bmatrix} (-wy+vz)\sin \phi \\ v(vy+wz)(1 - \cos \phi) + y \cos \phi \\ w(vy+wz)(1-\cos \phi) + z \cos \phi\end{bmatrix} \\ & = \begin{bmatrix} (- \cos\alpha q \cos\alpha + -\sin\alpha q \sin\alpha)\sin \phi \\ -\sin\alpha(-\sin\alpha q \cos\alpha+\cos\alpha q \sin\alpha)(1 - \cos \phi) + q \cos\alpha \cos \phi \\ \cos\alpha(-\sin\alpha q \cos\alpha+ \cos\alpha q \sin\alpha)(1-\cos \phi) + q \sin\alpha \cos \phi\end{bmatrix} \\ & = q \begin{bmatrix} -(\cos^2 \alpha +\sin ^2 \alpha)\sin \phi \\ \sin^2 \alpha(\cos\alpha-\cos\alpha )(1 - \cos \phi) + \cos\alpha \cos \phi \\ \cos^2 \alpha(-\sin\alpha + \sin\alpha)(1-\cos \phi) + \sin\alpha \cos \phi\end{bmatrix} \\ & = q \begin{bmatrix} -\sin \phi \\ \cos\alpha \cos \phi \\ \sin\alpha \cos \phi\end{bmatrix} \end{alignat} }