Talk:DWBA

From GISAXS
Jump to: navigation, search

DWBA Equation in thin film

Using the notation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_i = T(\alpha_i)} for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:




Equation

We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=|T_{i}T_{f}F_{+1}+T_{i}R_{f}F_{-2}+R_{i}T_{f}F_{+2}+R_{i}R_{f}F_{-1}|^{2}\\&{\begin{aligned}=\,\,&|T_{i}T_{f}|^{2}|F_{+1}|^{2}&&+|T_{i}|^{2}T_{f}R_{f}^{*}F_{+1}F_{-2}^{*}\\&&&+T_{i}R_{i}^{*}|T_{f}|^{2}F_{+1}F_{+2}^{*}+T_{i}R_{i}^{*}T_{f}R_{f}^{*}F_{+1}F_{-1}^{*}\\&+|T_{i}R_{f}|^{2}|F_{-2}|^{2}&&+|T_{i}|^{2}T_{f}^{*}R_{f}F_{+1}^{*}F_{-2}\\&&&+T_{i}R_{i}^{*}T_{f}^{*}R_{f}F_{+2}^{*}F_{-2}+T_{i}R_{i}^{*}|R_{f}|^{2}F_{-1}^{*}F_{-2}\\&+|R_{i}T_{f}|^{2}|F_{+2}|^{2}&&+T_{i}^{*}R_{i}|T_{f}|^{2}F_{+1}^{*}F_{+2}\\&&&+T_{i}^{*}R_{i}T_{f}R_{f}^{*}F_{+2}^{*}F_{-2}+|R_{i}|^{2}T_{f}R_{f}^{*}F_{-1}^{*}F_{+2}\\&+|R_{i}R_{f}|^{2}|F_{-1}|^{2}&&+T_{i}^{*}R_{i}T_{f}^{*}R_{f}F_{+1}^{*}F_{-1}\\&&&+T_{i}^{*}R_{i}|R_{f}|^{2}F_{-1}F_{-2}^{*}+|R_{i}|^{2}T_{f}^{*}R_{f}F_{-1}F_{+2}^{*}\\\end{aligned}}\\\end{aligned}}}

Simplification

We can rearrange to:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})=\,\,&|T_{i}T_{f}|^{2}|F_{+1}|^{2}+|T_{i}R_{f}|^{2}|F_{-2}|^{2}+|R_{i}T_{f}|^{2}|F_{+2}|^{2}+|R_{i}R_{f}|^{2}|F_{-1}|^{2}\\&+|T_{i}|^{2}T_{f}R_{f}^{*}F_{+1}F_{-2}^{*}+|T_{i}|^{2}T_{f}^{*}R_{f}F_{+1}^{*}F_{-2}\\&+T_{i}R_{i}^{*}|T_{f}|^{2}F_{+1}F_{+2}^{*}+T_{i}^{*}R_{i}|T_{f}|^{2}F_{+1}^{*}F_{+2}\\&+|R_{i}|^{2}T_{f}R_{f}^{*}F_{-1}^{*}F_{+2}+|R_{i}|^{2}T_{f}^{*}R_{f}F_{-1}F_{+2}^{*}\\&+T_{i}R_{i}^{*}|R_{f}|^{2}F_{-1}^{*}F_{-2}+T_{i}^{*}R_{i}|R_{f}|^{2}F_{-1}F_{-2}^{*}\\&+T_{i}R_{i}^{*}T_{f}R_{f}^{*}F_{+1}F_{-1}^{*}\\&+T_{i}R_{i}^{*}T_{f}^{*}R_{f}F_{+2}^{*}F_{-2}\\&+T_{i}^{*}R_{i}T_{f}R_{f}^{*}F_{+2}^{*}F_{-2}\\&+T_{i}^{*}R_{i}T_{f}^{*}R_{f}F_{+1}^{*}F_{-1}\\=\,\,&|T_{i}T_{f}|^{2}|F_{+1}|^{2}+|T_{i}R_{f}|^{2}|F_{-2}|^{2}+|R_{i}T_{f}|^{2}|F_{+2}|^{2}+|R_{i}R_{f}|^{2}|F_{-1}|^{2}\\&+|T_{i}|^{2}[T_{f}R_{f}^{*}F_{+1}F_{-2}^{*}+T_{f}^{*}R_{f}F_{+1}^{*}F_{-2}]\\&+|T_{f}|^{2}[T_{i}R_{i}^{*}F_{+1}F_{+2}^{*}+T_{i}^{*}R_{i}F_{+1}^{*}F_{+2}]\\&+|R_{i}|^{2}[T_{f}R_{f}^{*}F_{-1}^{*}F_{+2}+T_{f}^{*}R_{f}F_{-1}F_{+2}^{*}]\\&+|R_{f}|^{2}[T_{i}R_{i}^{*}F_{-1}^{*}F_{-2}+T_{i}^{*}R_{i}F_{-1}F_{-2}^{*}]\\&+[T_{i}R_{i}^{*}T_{f}R_{f}^{*}F_{+1}F_{-1}^{*}+T_{i}^{*}R_{i}T_{f}^{*}R_{f}F_{+1}^{*}F_{-1}]\\&+[T_{i}R_{i}^{*}T_{f}^{*}R_{f}F_{+2}^{*}F_{-2}+T_{i}^{*}R_{i}T_{f}R_{f}^{*}F_{+2}^{*}F_{-2}]\\\end{aligned}}}

We define Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{+1}=|F_{+1}|^2} , and note that for any complex number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , it is true that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c+c^{*}=2\mathrm {Re} [c]} . Thus:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\ & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\ & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\ & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ \end{align} }

Breaking into components

The experimental data Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_d(q_z)} can be broken into contributions from the transmitted channel Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d,\mathrm {Tc} }(qz)} and reflected channel Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I_{d,\mathrm {Rc} }(qz)} :

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}I_{d}(q_{z})&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(+Q_{z1})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(+Q_{z2})\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Tc} })+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{R}(q_{z}-\Delta q_{z,\mathrm {Rc} })\\&=[|T_{i}T_{f}|^{2}+|R_{i}R_{f}|^{2}]I_{d,\mathrm {Tc} }(q_{z})+[|T_{i}R_{f}|^{2}+|R_{i}T_{f}|^{2}]I_{d,\mathrm {Rc} }(q_{z})\\&=|Tc|^{2}I_{d,\mathrm {Tc} }(q_{z})+|Rc|^{2}I_{d,\mathrm {Rc} }(q_{z})\\\end{aligned}}}

We define the ratio between the channels to be:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} w (q_z) & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) } \end{align} }

Such that one can compute the two components from:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w} \right ) \\ I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ I_{d,\mathrm{Tc}}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ \end{align} }

and:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) \end{align} }

or:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ & = |Tc|^2 \left( \frac{w}{1-w} I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) }{|Tc|^2 \frac{w}{1-w} + |Rc|^2} \end{align} }