Lattice:Packing fraction
The packing fraction (or particle volume fraction) for a lattice is given by:
Where N is the number of particles per unit cell (which has volume ). For a sphere, the volume is so:
For a cubic unit cell of edge-length a:
Examples
For a SC lattice, the packing fraction is 0.524:
- Nearest-neighbor distance:
- Assuming spherical particles of radius R:
- Particle volume fraction:
- Maximum volume fraction: when
For a FCC lattice, the packing fraction is 0.740:
- Nearest-neighbor distance:
- Assuming spherical particles of radius R:
- Particle volume fraction:
- Maximum volume fraction: when
For a BCC lattice, the packing fraction is 0.680:
- Nearest-neighbor distance:
- Assuming spherical particles of radius R:
- Particle volume fraction:
- Maximum volume fraction: when
For a diamond lattice, the packing fraction is 0.340:
- Nearest-neighbor distance:
- Assuming spherical particles of radius R:
- Particle volume fraction:
- Maximum volume fraction: when