Difference between revisions of "Absorption length"
KevinYager (talk | contribs) (→Related forms) |
KevinYager (talk | contribs) (→Related forms) |
||
Line 41: | Line 41: | ||
| <math>\epsilon = \frac{1}{\mu}</math> | | <math>\epsilon = \frac{1}{\mu}</math> | ||
| <math>\epsilon = \frac{\rho}{\mu/\rho}</math> | | <math>\epsilon = \frac{\rho}{\mu/\rho}</math> | ||
− | | <math>\epsilon = \frac{ | + | | <math>\epsilon = \frac{M_a}{\rho N_a 2 r_e \lambda f_2 }</math> |
− | | <math>\epsilon = \frac{ | + | | <math>\epsilon = \frac{M_a}{\rho N_a \sigma}</math> |
− | | <math>\epsilon = \frac{ \lambda | + | | <math>\epsilon = \frac{ \lambda }{4 \pi \beta}</math> |
− | | <math>\epsilon = \frac{ | + | | <math>\epsilon = \frac{1}{2 \lambda \mathrm{Im}(\mathrm{SLD})} </math> |
|- | |- | ||
| <math>\mu = \frac{1}{\epsilon}</math> | | <math>\mu = \frac{1}{\epsilon}</math> | ||
| <math>\mu</math> | | <math>\mu</math> | ||
| <math>\mu = \frac{\mu/\rho}{\rho}</math> | | <math>\mu = \frac{\mu/\rho}{\rho}</math> | ||
− | | <math>\mu = \frac{\rho N_a}{ | + | | <math>\mu = \frac{\rho N_a}{M_a} 2 r_e \lambda f_2</math> |
− | | <math>\mu = \frac{\rho N_a}{ | + | | <math>\mu = \frac{\rho N_a}{M_a} \sigma</math> |
− | | <math>\mu = \frac{4 \pi | + | | <math>\mu = \frac{4 \pi }{ \lambda } \beta</math> |
− | | <math>\mu = | + | | <math>\mu = 2 \lambda\mathrm{Im}(\mathrm{SLD})</math> |
|- | |- | ||
| <math>\frac{\mu}{\rho} = \frac{1}{\rho\epsilon}</math> | | <math>\frac{\mu}{\rho} = \frac{1}{\rho\epsilon}</math> | ||
| <math>\frac{\mu}{\rho} = \mu/\rho</math> | | <math>\frac{\mu}{\rho} = \mu/\rho</math> | ||
| <math>\frac{\mu}{\rho}</math> | | <math>\frac{\mu}{\rho}</math> | ||
− | | <math>\frac{\mu}{\rho} = \frac{N_a}{ | + | | <math>\frac{\mu}{\rho} = \frac{N_a}{M_a} 2 r_e \lambda f_2</math> |
− | | <math>\frac{\mu}{\rho} = \frac{N_a}{ | + | | <math>\frac{\mu}{\rho} = \frac{N_a}{M_a} \sigma</math> |
− | | <math>\frac{\mu}{\rho} = \frac{4 \pi | + | | <math>\frac{\mu}{\rho} = \frac{4 \pi}{ \rho \lambda } \beta</math> |
− | | <math>\frac{\mu}{\rho} = \frac{2 | + | | <math>\frac{\mu}{\rho} = \frac{2 \lambda}{\rho } \mathrm{Im}(\mathrm{SLD})</math> |
|- | |- | ||
− | | <math>f_2 = \frac{ | + | | <math>f_2 = \frac{M_a }{\rho N_a 2 r_e \lambda \epsilon} </math> |
− | | <math>f_2 = \frac{ | + | | <math>f_2 = \frac{M_a }{\rho N_a 2 r_e \lambda} \mu </math> |
− | | <math>f_2 = \frac{ | + | | <math>f_2 = \frac{M_a }{ N_a 2 r_e \lambda} \frac{\mu}{\rho} </math> |
| <math>f_2</math> | | <math>f_2</math> | ||
| <math>f_2 = \frac{\sigma}{2 r_e \lambda}</math> | | <math>f_2 = \frac{\sigma}{2 r_e \lambda}</math> | ||
Line 70: | Line 70: | ||
| <math>f_2 = \frac{M_a}{\rho N_a r_e } \mathrm{Im}(\mathrm{SLD})</math> | | <math>f_2 = \frac{M_a}{\rho N_a r_e } \mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
− | | <math>\sigma = \frac{ | + | | <math>\sigma = \frac{M_a}{\rho N_a \epsilon} </math> |
− | | <math>\sigma = \frac{ | + | | <math>\sigma = \frac{M_a}{\rho N_a} \mu</math> |
− | | <math>\sigma = \frac{ | + | | <math>\sigma = \frac{M_a}{N_a} \frac{\mu}{\rho}</math> |
| <math>\sigma = 2 r_e \lambda f_2</math> | | <math>\sigma = 2 r_e \lambda f_2</math> | ||
| <math>\sigma</math> | | <math>\sigma</math> | ||
Line 78: | Line 78: | ||
| <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math> | | <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
− | | <math>\beta = \frac{ \lambda | + | | <math>\beta = \frac{ \lambda }{4 \pi \epsilon}</math> |
− | | <math>\beta = \frac{ \lambda | + | | <math>\beta = \frac{ \lambda }{4 \pi } \mu</math> |
− | | <math>\beta = \frac{ \rho \lambda | + | | <math>\beta = \frac{ \rho \lambda }{4 \pi } \frac{\mu}{\rho}</math> |
| <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math> | | <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math> | ||
| <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math> | | <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math> | ||
Line 86: | Line 86: | ||
| <math>\beta = \frac{\lambda^2}{2 \pi} \mathrm{Im}(\mathrm{SLD})</math> | | <math>\beta = \frac{\lambda^2}{2 \pi} \mathrm{Im}(\mathrm{SLD})</math> | ||
|- | |- | ||
− | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{ | + | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{1 }{2 \lambda \epsilon} </math> |
− | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{ | + | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{1}{2 \lambda} \mu</math> |
− | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho | + | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho }{2 \lambda} \frac{\mu}{\rho}</math> |
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a r_e }{M_a} f_2</math> | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a r_e }{M_a} f_2</math> | ||
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a}{2 \lambda M_a}\sigma</math> | | <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a}{2 \lambda M_a}\sigma</math> |
Revision as of 10:35, 7 June 2014
The absorption length or attenuation length in x-ray scattering is the distance over which the x-ray beam is absorbed. By convention, the absorption length ϵ is defined as the distance into a material where the beam flux has dropped to 1/e of its incident flux.
Absorption
The absorption follows a simple Beer-Lambert law:
The attenuation coefficient (or absorption coefficient) is simply the inverse of the absorption length;
Calculating
The absorption length arises from the imaginary part of the atomic scattering factor, f2. It is closely related to the absorption cross-section, and the mass absorption coefficient. Specifically, the atomic photoabsorption cross-section can be computed via:
Where λ is the x-ray wavelength, and re is the classical electron radius. The attenuation coefficient is given by:
where ρ is density, Na is the Avogadro constant, and ma is the atomic molar mass. Note that the mass attenuation coefficient is simply .
Related forms
As can be seen, there are many related quantities which express the material's absorption:
- Absorption length , the distance over which the intensity falls to 1/e.
- Attenuation coefficient , the characteristic inverse-distance for attenuation.
- Mass attenuation coefficient , the density-scaled attenuation.
- Absorptive atomic scattering factor , the intrinsic dissipative interaction of the material.
- Atomic photoabsorption cross-section , the cross-section ('effective size') of the atom's x-ray absorption (capture) efficiency.
- Imaginary refractive index , the resonant component of the refractive index.
- Imaginary Scattering Length Density , the absorptive component of the scattering contrast.