|
|
Line 51: |
Line 51: |
| If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and: | | If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and: |
| :<math> | | :<math> |
− | q = k \sin \theta_f | + | \begin{alignat}{2} |
| + | q & = 2 k \sin \left( \theta_f /2 \right) \\ |
| + | & = 2 k \sqrt{ \frac{1- \cos(\theta_f)}{2} } \\ |
| + | & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{1}{\sqrt{1+(x/d)^2}} \right) } \\ |
| + | & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{d}{\sqrt{d^2+x^2}} \right) } |
| + | \end{alignat} |
| + | </math> |
| + | The other component can be thought of in terms of the sides of a right-triangle with angle <math>\scriptstyle \theta_f = 0 </math>: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q_x & = q \cos ( \theta_f /2 ) \\ |
| + | & = 2k \sin(\theta_f /2 ) \cos ( \theta_f /2 ) \\ |
| + | & = k \sin(\theta_f)\\ |
| + | q_y & = - q \sin ( \theta_f /2 ) \\ |
| + | & = - 2k \sin(\theta_f /2 ) \sin ( \theta_f /2 ) \\ |
| + | & = - k \left( 1 - \cos \theta_f \right) \\ |
| + | & = k \left( \cos \theta_f - 1 \right) \\ |
| + | \end{alignat} |
| + | </math> |
| + | Summarizing: |
| + | :<math> |
| + | \mathbf{q} = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \\ \cos \theta_f - 1 \\ 0 \end{bmatrix} |
| + | </math> |
| + | |
| + | ==Out-of-plane only== |
| + | If <math>\scriptstyle \theta_f = 0 </math>, then <math>\scriptstyle q_x = 0 </math>, <math>\scriptstyle \alpha_f^{\prime} = \alpha_f = 2 \theta_s </math>, and: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q & = 2 k \sin \left( \alpha_f /2 \right) \\ |
| + | & = 2 k \sqrt{ \frac{1- \cos(\theta_f)}{2} } \\ |
| + | & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{1}{\sqrt{1+(x/d)^2}} \right) } \\ |
| + | & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{d}{\sqrt{d^2+x^2}} \right) } |
| + | \end{alignat} |
| </math> | | </math> |
| | | |
Revision as of 10:57, 30 December 2015
In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:
This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .
Total scattering
The full scattering angle is:
The total momentum transfer is:
Given that:
We can also write:
Where we take for granted that q must be positive.
In-plane only
If (and ), then , , and:
The other component can be thought of in terms of the sides of a right-triangle with angle :
Summarizing:
Out-of-plane only
If , then , , and:
Components
The momentum transfer components are:
Check
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: