|
|
Line 142: |
Line 142: |
| </math> | | </math> |
| And: | | And: |
− |
| |
− | ====Alternate check====
| |
− | As a check of these results, consider:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
| |
− | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
| |
− | \left( \frac{q}{k} \right)^2
| |
− | & = (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 \\
| |
− | & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\
| |
− | & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\
| |
− | & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\
| |
− | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }
| |
− | \end{alignat}
| |
− | </math>
| |
− | Where we used:
| |
− | ::<math>
| |
− | \begin{alignat}{2}
| |
− | \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\
| |
− | \sin \theta_f & = \sin( \arctan [x/d] ) \\
| |
− | & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\
| |
− | & = \frac{x}{\sqrt{d^2+x^2}}
| |
− | \end{alignat}
| |
− | </math>
| |
− |
| |
− | And, we further note that:
| |
− | ::<math>
| |
− | \begin{alignat}{2}
| |
− | \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
| |
− | \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\
| |
− | & = \frac{d^2}{\sqrt{d^2+x^2}}
| |
− | \end{alignat}
| |
− | </math>
| |
− | Continuing:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | \left( \frac{q}{k} \right)^2
| |
− | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\
| |
− | & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)} + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
| |
− | & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2} + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\
| |
− | & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
| |
− | & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
| |
− | & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2} \\
| |
− | & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2} \\
| |
− | & = ? \\
| |
− | & = ? \\
| |
− | & = \frac{\sqrt{d^2+x^2+z^2} - d}{2 \sqrt{d^2+x^2+z^2}} \\
| |
− | & = \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) \\
| |
− | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right)
| |
− | \end{alignat}
| |
− | </math>
| |
Revision as of 11:37, 30 December 2015
In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:
This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .
Total scattering
The full scattering angle is defined by a right-triangle with base d and height :
The total momentum transfer is:
Given that:
We can also write:
Where we take for granted that q must be positive.
In-plane only
If (and ), then , , and:
The other component can be thought of in terms of the sides of a right-triangle with angle :
Summarizing:
Out-of-plane only
If , then , , and:
The components are:
Summarizing:
Components
The momentum transfer components are:
In vector form:
Total magnitude
Note that this provides a simple expression for q total:
Check
As a check of these results, consider:
And: