Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(Components (distances))
 
(3 intermediate revisions by the same user not shown)
Line 46: Line 46:
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) }
+
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } \\
 +
    & = \sqrt{2} \frac{2 \pi}{\lambda} \sqrt{ 1 - \frac{d}{\sqrt{x^2+d^2+z^2}}  }
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Line 102: Line 103:
 
</math>
 
</math>
  
==Components==
+
==Components (angular)==
 
For arbitrary 3D scattering vectors, the [[momentum transfer]] components are:
 
For arbitrary 3D scattering vectors, the [[momentum transfer]] components are:
 
:<math>
 
:<math>
Line 153: Line 154:
 
     = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }}  \\
 
     = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }}  \\
 
     = & \cos \theta_f \cos \alpha_f
 
     = & \cos \theta_f \cos \alpha_f
 +
\end{alignat}
 +
</math>
 +
 +
==Components (distances)==
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f  \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right)  \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\
 +
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}}  \\
 +
\frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
 +
\frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\
 +
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}}  \\
 +
\frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
 +
\frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\
 +
 +
\end{alignat}
 +
</math>
 +
Note that <math>\cos \theta_f = d/\sqrt{d^2+x^2}</math>, and <math>\cos^2 \theta_f = d^2/(d^2+x^2)</math> so:
 +
::<math>
 +
\begin{alignat}{2}
 +
\frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }}
 +
    & = \frac{1}{\sqrt{d^2+z^2 \left( d^2/(d^2+x^2) \right) }} \\
 +
    & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2)/(d^2+x^2)  }} \\
 +
    & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }} \\
 +
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q}
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }}  \\
 +
\frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }} - 1 \\
 +
\frac{z \left( d/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }} \end{bmatrix} \\
 +
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x}{ \sqrt{x^2 + d^2 + z^2  }}  \\
 +
\frac{d }{\sqrt{x^2 + d^2 + z^2  }} - 1 \\
 +
\frac{z }{\sqrt{x^2 + d^2 + z^2  }} \end{bmatrix} \\
 +
 +
 +
\end{alignat}
 +
</math>
 +
 +
===Total magnitude===
 +
:<math>
 +
\begin{alignat}{2}
 +
\left( \frac{q}{k} \right)^2
 +
    & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2  }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2  } }{\sqrt{x^2 + d^2 + z^2  }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2  }} \right)^2 \\
 +
    & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2  }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\
 +
    & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2  \right) + z^2 }{x^2 + d^2 + z^2} \\
 +
    & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
 +
    & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
 +
    & = 2 \left( 1  - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right) \\
 +
q & = \sqrt{2}k \sqrt{1  - \frac{d}{\sqrt{x^2 + d^2 + z^2}} }
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Latest revision as of 12:11, 13 January 2016

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is defined by a right-triangle with base d and height :

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

The components are:

Summarizing:

Components (angular)

For arbitrary 3D scattering vectors, the momentum transfer components are:

In vector form:

Total magnitude

Note that this provides a simple expression for q total:

Check

As a check of these results, consider:

And:

Components (distances)

Note that , and so:

And:

Total magnitude