Difference between revisions of "Unit cell"

From GISAXS
Jump to: navigation, search
(Notation)
(Vectors)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Image:Bcc02-unit cell.png|thumb|right|300px|Example of the [[Lattice:BCC|BCC]] unit cell.]]
 +
 
The '''unit cell''' is the basic building block of a crystal [[lattice]] (whether an atomic crystal or a nanoscale [[superlattice]]). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.
 
The '''unit cell''' is the basic building block of a crystal [[lattice]] (whether an atomic crystal or a nanoscale [[superlattice]]). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.
  
==Notation==
+
A unit cell can be defined by three vectors that lie along the edges of the enclosing [http://en.wikipedia.org/wiki/Parallelepiped parallelepped]. We denote the vectors as <math>\mathbf{a}</math>, <math>\mathbf{b}</math>, and <math>\mathbf{c}</math>; alternately the unit cell can be described by the lengths of these vectors (<math>a</math>, <math>b</math>, <math>c</math>), and the angles between them:
* '''Real space''':
+
: <math>\alpha</math>, the angle between <math>b</math> and <math>c</math>
** Crystal ''planes'':
+
: <math>\beta</math>, the angle between <math>a</math> and <math>c</math>
*** (hkl) denotes a plane of the crystal structure (and repetitions of that plane, with the given spacing). In cubic systems (but not others), the normal to the plane is [hkl]
+
: <math>\gamma</math>, the angle between <math>a</math> and <math>b</math>
*** {hkl} denotes the set of all planes that are equivalent to (hkl) by the symmetry of the lattice
 
** Crystal ''directions'':
 
*** [hkl] denotes a direction of a vector (in the basis of the direct lattice vectors)
 
*** <math>\left\langle hkl\right\rangle</math> denotes the set of all directions that are equivalent to [hkl] by symmetry (e.g. in cubic system <100> means [100, [010], [001], [-100], [0-10], [00-1])
 
** hkl denotes a diffracting plane
 
 
 
  
* '''[[Reciprocal space]]''':
 
** Reciprocal ''planes'':
 
*** [hkl] denotes a plane
 
*** <math>\left\langle hkl\right\rangle</math> denotes the set of all planes that are equivalent to [hkl]
 
** Reciprocal ''directions'':
 
*** (hkl) denotes a particular direction (normal to plane (hkl) in real space)
 
*** {hkl} denotes the set of all directions that are equivalent to (hkl)
 
** hkl denotes an indexed reflection
 
  
==Math==
+
==Mathematical description==
 
===Vectors===
 
===Vectors===
 +
There are many ways to define the Cartesian basis for the unit cell in [[real-space]]. A typical definition is:
 
:<math>\begin{array}{l}
 
:<math>\begin{array}{l}
 
\mathbf{a} = \begin{bmatrix}
 
\mathbf{a} = \begin{bmatrix}
Line 43: Line 32:
 
c \frac{ \cos{\alpha} - \cos{\beta}\cos{\gamma} }{\sin{\gamma}} \\
 
c \frac{ \cos{\alpha} - \cos{\beta}\cos{\gamma} }{\sin{\gamma}} \\
 
c \sqrt{  1 - \cos^2{\beta} - \left( \frac{\cos{\alpha} - \cos{\beta}\cos{\gamma}}{\sin{\gamma}} \right)^2 }
 
c \sqrt{  1 - \cos^2{\beta} - \left( \frac{\cos{\alpha} - \cos{\beta}\cos{\gamma}}{\sin{\gamma}} \right)^2 }
 +
\end{bmatrix}
 +
\end{array}
 +
</math>
 +
There are many mathematically equivalent ways to express a given definition. For instance, the vector <math>\mathbf{c}</math> can also be written as (c.f. [https://www.ocf.berkeley.edu/~rfu/notes/vect_unit_cells.pdf these notes] and [https://doi.org/10.1107/S0108767396005697 Trueblood et al. ''Acta Cryst'' '''1996''', A52, 770-781]):
 +
:<math>\begin{array}{l}
 +
\mathbf{c} = \begin{bmatrix}
 +
c \cos{\beta} \\
 +
-c \sin \beta \cos \alpha^{*} \\
 +
\frac{1}{c^{*}} \\
 +
\end{bmatrix}
 +
= \begin{bmatrix}
 +
c \cos{\beta} \\
 +
c \frac{\cos\alpha -\cos\beta \cos\gamma  }{\sin\gamma} \\
 +
\frac{c}{\sin\gamma} \sqrt{1 + 2 \cos\alpha\cos\beta\cos\gamma - \cos^2 \alpha - \cos^2\beta -\cos^2\gamma}\\
 
\end{bmatrix}
 
\end{bmatrix}
 
\end{array}
 
\end{array}
Line 67: Line 70:
 
* <math>\alpha</math> is the angle between <math>\mathbf{b}</math> and <math>\mathbf{c}</math>
 
* <math>\alpha</math> is the angle between <math>\mathbf{b}</math> and <math>\mathbf{c}</math>
  
[[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]]
+
[[Image:Unit cell01.png|center|thumb|300px|Unit cell definition using parallelepiped with lengths ''a'', ''b'', ''c'' and angles between the sides given by α,β,γ (from Wikipedia [http://en.wikipedia.org/wiki/Fractional_coordinates fractional coordinates]). ]]
  
===Reciprocal Vectors===
+
===Reciprocal vectors===
 +
The repeating structure of a unit cell creates peaks in [[reciprocal space]]. In particular, we observe maxima (constructive interference) when:
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q} \cdot \mathbf{a} & = 2 \pi h \\
 +
\mathbf{q} \cdot \mathbf{b} & = 2 \pi k \\
 +
\mathbf{q} \cdot \mathbf{c} & = 2 \pi l \\
 +
\end{alignat}
 +
</math>
 +
Where <math>h</math>, <math>k</math>, and <math>l</math> are integers. We define reciprocal-space vectors:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 77: Line 89:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 
+
And we can then express the [[momentum transfer]] (<math>\mathbf{q}</math>) in terms of these reciprocal vectors:
====Vector components====
 
Generally:
 
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\
+
\mathbf{q} & = (\mathbf{q}\cdot\mathbf{a})\mathbf{u} + (\mathbf{q}\cdot\mathbf{b})\mathbf{v} + (\mathbf{q}\cdot\mathbf{c})\mathbf{w}
  & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\
 
  & = 2 \pi \mathbf{H}_{hkl}
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
With components:
+
Combining with the three Laue equations yields:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\mathbf{u} & = ... \\
+
\mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\
\mathbf{v} & = ... \\
+
  & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\
\mathbf{w}  
+
  & = 2 \pi \mathbf{H}_{hkl}
& = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } \\
 
& =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\
 
& =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \sin{\gamma} \end{bmatrix} \\
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
Where <math>\mathbf{H}_{hkl}</math> is a vector that defines the position of [[Bragg's law|Bragg reflection]] <math>hkl</math> for the reciprocal-lattice.
  
 
==Examples==
 
==Examples==
Line 139: Line 145:
 
   & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi k}{b} \\ \frac{2 \pi l}{c} \end{bmatrix}  
 
   & = \begin{bmatrix} \frac{2 \pi h}{a} \\ \frac{2 \pi k}{b} \\ \frac{2 \pi l}{c} \end{bmatrix}  
 
\end{alignat}
 
\end{alignat}
 +
</math>
 +
And:
 +
:<math>
 +
q_{hkl} = 2\pi \sqrt{ \left( \frac{h}{a} \right)^2 + \left( \frac{k}{b} \right)^2 + \left( \frac{l}{c} \right)^2 }
 
</math>
 
</math>
  
Line 182: Line 192:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
 +
==See Also==
 +
* [[Lattices]]
 +
* K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams [https://scripts.iucr.org/cgi-bin/paper?S0108767396005697 Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature] ''Acta Cryst'' '''1996''', A52, 770-781. [https://doi.org/10.1107/S0108767396005697 doi: 10.1107/S0108767396005697]

Latest revision as of 09:33, 14 November 2022

Example of the BCC unit cell.

The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.

A unit cell can be defined by three vectors that lie along the edges of the enclosing parallelepped. We denote the vectors as , , and ; alternately the unit cell can be described by the lengths of these vectors (, , ), and the angles between them:

, the angle between and
, the angle between and
, the angle between and


Mathematical description

Vectors

There are many ways to define the Cartesian basis for the unit cell in real-space. A typical definition is:

There are many mathematically equivalent ways to express a given definition. For instance, the vector can also be written as (c.f. these notes and Trueblood et al. Acta Cryst 1996, A52, 770-781):

Relations

Volume

If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is

The volume of a unit cell with all edge-length equal to unity is:

Angles

  • is the angle between and
  • is the angle between and
  • is the angle between and
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α,β,γ (from Wikipedia fractional coordinates).

Reciprocal vectors

The repeating structure of a unit cell creates peaks in reciprocal space. In particular, we observe maxima (constructive interference) when:

Where , , and are integers. We define reciprocal-space vectors:

And we can then express the momentum transfer () in terms of these reciprocal vectors:

Combining with the three Laue equations yields:

Where is a vector that defines the position of Bragg reflection for the reciprocal-lattice.

Examples

Cubic

Since , , and:

And in reciprocal-space:

So:

And:

Hexagonal

Since and , , and:

And in reciprocal-space:

So:

See Also