Difference between revisions of "Lattice:HCP"

From GISAXS
Jump to: navigation, search
(Canonical HCP)
(Reciprocal-space Peaks)
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''HCP''' ('''Hexagonal close-packed''') is a [[Lattice:Hexagonal|hexagonal]] [[Lattices|lattice]]. It is notable (along with [[Lattice:FCC|FACC]]) because it achieves the densest possible packing of spheres. It thus arises naturally in many atomic crystals, as well as in colloidal crystals and nanoparticles [[superlattice]]s.
+
'''HCP''' ('''Hexagonal close-packed''') is a [[Lattice:Hexagonal|hexagonal]] [[Lattices|lattice]]. It is notable (along with [[Lattice:FCC|FCC]]) because it achieves the densest possible packing of spheres. It thus arises naturally in many atomic crystals, as well as in colloidal crystals and nanoparticles [[superlattice]]s.
  
 
==Canonical HCP==
 
==Canonical HCP==
Line 6: Line 6:
 
\frac{c}{a} = 2 \sqrt{ \frac{2}{3} } = \frac{2\sqrt{6}}{3} \approx 1.633
 
\frac{c}{a} = 2 \sqrt{ \frac{2}{3} } = \frac{2\sqrt{6}}{3} \approx 1.633
 
</math>
 
</math>
 +
 +
===Symmetry===
 +
* Crystal Family: Hexagonal
 +
* Particles per unit cell: <math>n=2</math>
 +
** 'inner' particles: <math>1</math>
 +
** 'corner' particles: <math>1</math>
 +
* Volume of unit cell: <math>V_d=a^2 c \sin(60^{\circ}) = a^2 c \frac{\sqrt{3}}{2}</math>
 +
* Dimensionality: <math>d=3</math>
 +
 +
===Particle Positions (basis vectors)===
 +
There are 9 positions, with 2 particles in the unit cell
 +
 +
====Particle A: corners====
 +
These are the corners of the hexagonal frame. There are 8 corner positions, which contributes a total of 1 particle.
 +
* <math> 8 \, \mathrm{corners}: \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} + \frac{1}{12} + \frac{1}{6} = 1</math>
 +
** <math>\left(0,0,0\right), \, (0,0,1), \, (0,1,0), \, (1,0,0), \, (0,1,1), \, (1,0,1), \, (1,1,0), \, (1,1,1)</math>
 +
 +
====Particle B: inner====
 +
* <math> 1 \, \mathrm{inner} \, \times \, 1 = 2</math>
 +
** <math>\left(\frac{1}{3},\frac{1}{3},\frac{1}{2} \right) </math>
 +
 +
===Particle Positions (Cartesian coordinates)===
 +
 +
====Particle A: corners====
 +
* <math>\left(0,0,0\right), \, (0,0,c), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, (a,0,0), \, \left(\frac{b}{2},\frac{\sqrt{3}b}{2},c \right), \, (a,0,c), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},0 \right), \, \left(a+\frac{b}{2},\frac{\sqrt{3}b}{2},c \right)</math>
 +
 +
====Particle B: inner====
 +
* <math>\left(\frac{a}{3}+\frac{b}{6},\frac{\sqrt{3}b}{6},\frac{c}{2} \right)</math>
 +
 +
===[[Reciprocal-space]] Peaks===
 +
* Allowed reflections:
 +
** <math>l</math> even
 +
** <math>h+2k \neq 3 n</math>
 +
* Peak positions:
 +
*: <math>q_{hkl}=2\pi\left( \frac{(h^2 + hk + k^2)^2}{a^2} + \frac{l^2}{c^2} \right)^{1/2}</math>
  
 
===Examples===
 
===Examples===
 
====Elemental====
 
====Elemental====
 +
[http://en.wikipedia.org/wiki/Periodic_table_%28crystal_structure%29 Many elements pack into HCP]. E.g.:
 
: 4. [http://en.wikipedia.org/wiki/Beryllium Beryllium (Be)] (''a'' = ''b'' = 2.290 Å, ''c'' = 3.588, ''c''/''a'' = 1.567)
 
: 4. [http://en.wikipedia.org/wiki/Beryllium Beryllium (Be)] (''a'' = ''b'' = 2.290 Å, ''c'' = 3.588, ''c''/''a'' = 1.567)
 
: 27. [http://en.wikipedia.org/wiki/Cobalt Cobalt (Co)] (''a'' = ''b'' = 2.5071 Å, ''c'' = 4.0695, ''c''/''a'' = 1.623)
 
: 27. [http://en.wikipedia.org/wiki/Cobalt Cobalt (Co)] (''a'' = ''b'' = 2.5071 Å, ''c'' = 4.0695, ''c''/''a'' = 1.623)
Line 17: Line 53:
  
 
====Nano====
 
====Nano====
* TBD
+
* Gold nanoparticles
 +
** Stoeva et al. [http://pubs.acs.org/doi/abs/10.1021/jp030013%2B Face-Centered Cubic and Hexagonal Closed-Packed Nanocrystal Superlattices of Gold Nanoparticles Prepared by Different Methods] ''J. Phys. Chem. B'' '''2003''', 107 (30), 7441-7448 [http://dx.doi.org/10.1021/jp030013+ doi: 10.1021/jp030013+]
  
 
==See Also==
 
==See Also==
 
* [http://en.wikipedia.org/wiki/Close-packing_of_equal_spheres Wikipedia: Close-packing of equal spheres]
 
* [http://en.wikipedia.org/wiki/Close-packing_of_equal_spheres Wikipedia: Close-packing of equal spheres]
 +
* [[Lattice:AlB2]]

Latest revision as of 17:31, 10 November 2014

HCP (Hexagonal close-packed) is a hexagonal lattice. It is notable (along with FCC) because it achieves the densest possible packing of spheres. It thus arises naturally in many atomic crystals, as well as in colloidal crystals and nanoparticles superlattices.

Canonical HCP

In the canonical HCP, the ratio between the a and c distances is:

Symmetry

  • Crystal Family: Hexagonal
  • Particles per unit cell:
    • 'inner' particles:
    • 'corner' particles:
  • Volume of unit cell:
  • Dimensionality:

Particle Positions (basis vectors)

There are 9 positions, with 2 particles in the unit cell

Particle A: corners

These are the corners of the hexagonal frame. There are 8 corner positions, which contributes a total of 1 particle.

Particle B: inner

Particle Positions (Cartesian coordinates)

Particle A: corners

Particle B: inner

Reciprocal-space Peaks

  • Allowed reflections:
    • even
  • Peak positions:

Examples

Elemental

Many elements pack into HCP. E.g.:

4. Beryllium (Be) (a = b = 2.290 Å, c = 3.588, c/a = 1.567)
27. Cobalt (Co) (a = b = 2.5071 Å, c = 4.0695, c/a = 1.623)
48. Cadmium (Cd) (a =b = 2.9794 Å, c = 5.6186 Å, c/a = 1.886)

Atomic

  • TBD

Nano

See Also