|
|
(11 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| In transmission-[[SAXS]] ([[TSAXS]]), the x-ray beam hits the sample at normal incidence, and passes directly through without [[refraction]]. TSAXS is normally considered in terms of the one-dimensional [[momentum transfer]] (''q''); however the full 3D form of the ''q''-vector is necessary when considering [[scattering]] from anisotropic materials. The ''q''-vector in fact has three components: | | In transmission-[[SAXS]] ([[TSAXS]]), the x-ray beam hits the sample at normal incidence, and passes directly through without [[refraction]]. TSAXS is normally considered in terms of the one-dimensional [[momentum transfer]] (''q''); however the full 3D form of the ''q''-vector is necessary when considering [[scattering]] from anisotropic materials. The ''q''-vector in fact has three components: |
| :<math> | | :<math> |
− | \mathbf{q} = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} | + | \begin{alignat}{2} |
| + | \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} |
| + | \end{alignat} |
| </math> | | </math> |
| This vector is always on the surface of the [[Ewald sphere]]. Consider that the [[x-ray]] beam points along +''y'', so that on the [[detector]], the horizontal is ''x'', and the vertical is ''z''. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position <math>\scriptstyle (x,z) </math>. The scattering angles are then: | | This vector is always on the surface of the [[Ewald sphere]]. Consider that the [[x-ray]] beam points along +''y'', so that on the [[detector]], the horizontal is ''x'', and the vertical is ''z''. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position <math>\scriptstyle (x,z) </math>. The scattering angles are then: |
Line 43: |
Line 46: |
| q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ | | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ |
| & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ | | & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ |
− | & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } | + | & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } \\ |
| + | & = \sqrt{2} \frac{2 \pi}{\lambda} \sqrt{ 1 - \frac{d}{\sqrt{x^2+d^2+z^2}} } |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Line 99: |
Line 103: |
| </math> | | </math> |
| | | |
− | ==Components== | + | ==Components (angular)== |
− | The [[momentum transfer]] components are:
| + | For arbitrary 3D scattering vectors, the [[momentum transfer]] components are: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 113: |
Line 117: |
| </math> | | </math> |
| | | |
− | ===Check=== | + | ===Total magnitude=== |
− | As a check of these results, consider:
| + | Note that this provides a simple expression for ''q'' total: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 120: |
Line 124: |
| & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ | | & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\ |
| \left( \frac{q}{k} \right)^2 | | \left( \frac{q}{k} \right)^2 |
− | & = (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 \\ | + | & = \sin^2 \theta_f \cos^2 \alpha_f + \cos^2 \theta_f \cos^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 + \sin^2 \alpha_f \\ |
− | & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\
| + | & = \cos^2 \alpha_f (\sin^2 \theta_f + \cos^2 \theta_f) +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\ |
− | & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\ | + | & = \cos^2 \alpha_f (1) +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\ |
− | & = \frac{x^2}{d^2+x^2} \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } \\ | + | & = 2 -2 \cos \theta_f \cos \alpha_f \\ |
− | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f } | + | q & = \sqrt{2}k \sqrt{ 1 - \cos \theta_f \cos \alpha_f } \\ |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | Where we used:
| + | |
− | ::<math> | + | ====Check==== |
| + | As a check of these results, consider: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\ |
| + | & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\ |
| + | \left( \frac{q}{k} \right)^2 |
| + | & = \frac{4}{2} \left( 1-\cos 2\theta_s \right) \\ |
| + | & = 2 \left( 1-\frac{1}{\sqrt{1+\left( \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right) ^2}} \right) \\ |
| + | & = 2 \left( 1-\frac{1}{\sqrt{1+\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } }} \right) \\ |
| + | & = 2-\frac{2}{\sqrt{1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } }} \\ |
| + | \end{alignat} |
| + | </math> |
| + | And: |
| + | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\ | + | & \left( 1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ |
− | \sin \theta_f & = \sin( \arctan [x/d] ) \\ | + | = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f}+\frac{\cos^2 \alpha_f \sin^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2} \\ |
− | & = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\ | + | = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f}{\cos^2 \alpha_f \cos^2 \theta_f} \right) ^{-1/2} \\ |
− | & = \frac{x}{\sqrt{d^2+x^2}} | + | = & \left( \frac{\cos^2 \theta_f \cos^2 \alpha_f }{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f} \right) ^{+1/2} \\ |
| + | = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }} \\ |
| + | = & \cos \theta_f \cos \alpha_f |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| | | |
− | And, we further note that:
| + | ==Components (distances)== |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\ |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ |
| + | \frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ |
| + | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ |
| + | \frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ |
| + | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ |
| + | |
| + | \end{alignat} |
| + | </math> |
| + | Note that <math>\cos \theta_f = d/\sqrt{d^2+x^2}</math>, and <math>\cos^2 \theta_f = d^2/(d^2+x^2)</math> so: |
| ::<math> | | ::<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\ | + | \frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }} |
− | \cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\ | + | & = \frac{1}{\sqrt{d^2+z^2 \left( d^2/(d^2+x^2) \right) }} \\ |
− | & = \frac{d^2}{\sqrt{d^2+x^2}}
| + | & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2)/(d^2+x^2) }} \\ |
| + | & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} \\ |
| + | |
| + | \end{alignat} |
| + | </math> |
| + | And: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \mathbf{q} |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} \\ |
| + | \frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} - 1 \\ |
| + | \frac{z \left( d/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x}{ \sqrt{x^2 + d^2 + z^2 }} \\ |
| + | \frac{d }{\sqrt{x^2 + d^2 + z^2 }} - 1 \\ |
| + | \frac{z }{\sqrt{x^2 + d^2 + z^2 }} \end{bmatrix} \\ |
| + | |
| + | |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | ====cont==== | + | |
− | Continuing:
| + | ===Total magnitude=== |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| \left( \frac{q}{k} \right)^2 | | \left( \frac{q}{k} \right)^2 |
− | & = \frac{x^2}{d^2+x^2} \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\ | + | & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 } }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 \\ |
− | & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)} + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
| + | & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\ |
− | & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2} + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\ | + | & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2 \right) + z^2 }{x^2 + d^2 + z^2} \\ |
− | & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
| + | & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ |
− | & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2} + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\ | + | & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ |
− | & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2} \\ | + | & = 2 \left( 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right) \\ |
− | & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2} \\ | + | q & = \sqrt{2}k \sqrt{1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} } |
− | & = ? \\ | |
− | & = ? \\
| |
− | & = \frac{\sqrt{d^2+x^2+z^2} - d}{2 \sqrt{d^2+x^2+z^2}} \\
| |
− | & = \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) \\
| |
− | q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right)
| |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:
This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:
where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .
Total scattering
The full scattering angle is defined by a right-triangle with base d and height :
The total momentum transfer is:
Given that:
We can also write:
Where we take for granted that q must be positive.
In-plane only
If (and ), then , , and:
The other component can be thought of in terms of the sides of a right-triangle with angle :
Summarizing:
Out-of-plane only
If , then , , and:
The components are:
Summarizing:
Components (angular)
For arbitrary 3D scattering vectors, the momentum transfer components are:
In vector form:
Total magnitude
Note that this provides a simple expression for q total:
Check
As a check of these results, consider:
And:
Components (distances)
Note that , and so:
And:
Total magnitude