Difference between revisions of "Unit cell"

From GISAXS
Jump to: navigation, search
(Reciprocal Vectors)
Line 55: Line 55:
 
[[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]]
 
[[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]]
  
===Reciprocal Vectors===
+
===Reciprocal vectors===
 +
The repeating structure of a unit cell creates peaks in [[reciprocal space]]. In particular, we observe maxima (constructive interference) when:
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q} \cdot \mathbf{a} & = 2 \pi h \\
 +
\mathbf{q} \cdot \mathbf{b} & = 2 \pi k \\
 +
\mathbf{q} \cdot \mathbf{c} & = 2 \pi l \\
 +
\end{alignat}
 +
</math>
 +
Where <math>h</math>, <math>k</math>, and <math>l</math> are integers. We define reciprocal-space vectors:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 63: Line 72:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 
+
And we can then express the [[momentum transfer]] (<math>\mathbf{q}</math>) in terms of these reciprocal vectors:
====Vector components====
 
Generally:
 
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\
+
\mathbf{q} & = (\mathbf{q}\cdot\mathbf{a})\mathbf{u} + (\mathbf{q}\cdot\mathbf{b})\mathbf{v} + (\mathbf{q}\cdot\mathbf{c})\mathbf{w}
  & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\
 
  & = 2 \pi \mathbf{H}_{hkl}
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
With components:
+
Combining with the three Laue equations yields:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\mathbf{u} & = ... \\
+
\mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\
\mathbf{v} & = ... \\
+
  & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\
\mathbf{w}  
+
  & = 2 \pi \mathbf{H}_{hkl}
& = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } \\
 
& =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\
 
& =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \sin{\gamma} \end{bmatrix} \\
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
Where <math>\mathbf{H}_{hkl}</math> is a vector that defines the position of Bragg reflection <math>hkl</math> for the reciprocal-lattice.
  
 
==Examples==
 
==Examples==

Revision as of 19:21, 3 June 2014

The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.

A unit cell can be defined by three vectors that lie along the edges of the enclosing parallelepped. We denote the vectors as , , and ; alternately the unit cell can be described by the lengths of these vectors (, , ), and the angles between them:

, the angle between and
, the angle between and
, the angle between and


Mathematical description

Vectors

Relations

Volume

If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is

The volume of a unit cell with all edge-length equal to unity is:

Angles

  • is the angle between and
  • is the angle between and
  • is the angle between and

Reciprocal vectors

The repeating structure of a unit cell creates peaks in reciprocal space. In particular, we observe maxima (constructive interference) when:

Where , , and are integers. We define reciprocal-space vectors:

And we can then express the momentum transfer () in terms of these reciprocal vectors:

Combining with the three Laue equations yields:

Where is a vector that defines the position of Bragg reflection for the reciprocal-lattice.

Examples

Cubic

Since , , and:

And in reciprocal-space:

So:

Hexagonal

Since and , , and:

And in reciprocal-space:

So: