|
|
Line 55: |
Line 55: |
| [[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]] | | [[Image:Unit cell01.png|thumb|center|300px|From [http://en.wikipedia.org/wiki/Fractional_coordinates Fractional Coordinates (Wikipedia)]]] |
| | | |
− | ===Reciprocal Vectors=== | + | ===Reciprocal vectors=== |
| + | The repeating structure of a unit cell creates peaks in [[reciprocal space]]. In particular, we observe maxima (constructive interference) when: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \mathbf{q} \cdot \mathbf{a} & = 2 \pi h \\ |
| + | \mathbf{q} \cdot \mathbf{b} & = 2 \pi k \\ |
| + | \mathbf{q} \cdot \mathbf{c} & = 2 \pi l \\ |
| + | \end{alignat} |
| + | </math> |
| + | Where <math>h</math>, <math>k</math>, and <math>l</math> are integers. We define reciprocal-space vectors: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
Line 63: |
Line 72: |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | | + | And we can then express the [[momentum transfer]] (<math>\mathbf{q}</math>) in terms of these reciprocal vectors: |
− | ====Vector components====
| |
− | Generally:
| |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ | + | \mathbf{q} & = (\mathbf{q}\cdot\mathbf{a})\mathbf{u} + (\mathbf{q}\cdot\mathbf{b})\mathbf{v} + (\mathbf{q}\cdot\mathbf{c})\mathbf{w} |
− | & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\
| |
− | & = 2 \pi \mathbf{H}_{hkl}
| |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | With components:
| + | Combining with the three Laue equations yields: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \mathbf{u} & = ... \\ | + | \mathbf{q}_{hkl} & = (2 \pi h)\mathbf{u} + (2 \pi k)\mathbf{v} + (2 \pi l)\mathbf{w} \\ |
− | \mathbf{v} & = ... \\
| + | & = 2 \pi(h\mathbf{u} + k \mathbf{v} + l \mathbf{w}) \\ |
− | \mathbf{w} | + | & = 2 \pi \mathbf{H}_{hkl} |
− | & = \frac{\mathbf{a}\times\mathbf{b}}{\mathbf{a}\cdot (\mathbf{b}\times\mathbf{c}) } \\
| |
− | & =\frac{1}{V} \mathbf{a}\times\mathbf{b} \\
| |
− | & =\frac{1}{V} \begin{bmatrix} 0 \\ 0 \\ a b \sin{\gamma} \end{bmatrix} \\
| |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| + | Where <math>\mathbf{H}_{hkl}</math> is a vector that defines the position of Bragg reflection <math>hkl</math> for the reciprocal-lattice. |
| | | |
| ==Examples== | | ==Examples== |
Revision as of 19:21, 3 June 2014
The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.
A unit cell can be defined by three vectors that lie along the edges of the enclosing parallelepped. We denote the vectors as , , and ; alternately the unit cell can be described by the lengths of these vectors (, , ), and the angles between them:
- , the angle between and
- , the angle between and
- , the angle between and
Mathematical description
Vectors
Relations
Volume
If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is
The volume of a unit cell with all edge-length equal to unity is:
Angles
- is the angle between and
- is the angle between and
- is the angle between and
Reciprocal vectors
The repeating structure of a unit cell creates peaks in reciprocal space. In particular, we observe maxima (constructive interference) when:
Where , , and are integers. We define reciprocal-space vectors:
And we can then express the momentum transfer () in terms of these reciprocal vectors:
Combining with the three Laue equations yields:
Where is a vector that defines the position of Bragg reflection for the reciprocal-lattice.
Examples
Cubic
Since , , and:
And in reciprocal-space:
So:
Hexagonal
Since and , , and:
And in reciprocal-space:
So: