Difference between revisions of "Absorption length"

From GISAXS
Jump to: navigation, search
(Related forms)
(Related forms)
Line 41: Line 41:
 
| <math>\epsilon = \frac{1}{\mu}</math>
 
| <math>\epsilon = \frac{1}{\mu}</math>
 
| <math>\epsilon = \frac{\rho}{\mu/\rho}</math>
 
| <math>\epsilon = \frac{\rho}{\mu/\rho}</math>
| <math>\epsilon = \frac{m_a}{\rho N_a 2 r_e \lambda f_2 }</math>
+
| <math>\epsilon = \frac{M_a}{\rho N_a 2 r_e \lambda f_2 }</math>
| <math>\epsilon = \frac{m_a}{\rho N_a \sigma}</math>
+
| <math>\epsilon = \frac{M_a}{\rho N_a \sigma}</math>
| <math>\epsilon = \frac{ \lambda m_a }{4 \pi M_a \beta}</math>
+
| <math>\epsilon = \frac{ \lambda }{4 \pi \beta}</math>
| <math>\epsilon = \frac{m_a }{2 M_a \lambda \mathrm{Im}(\mathrm{SLD})} </math>
+
| <math>\epsilon = \frac{1}{2 \lambda \mathrm{Im}(\mathrm{SLD})} </math>
 
|-
 
|-
 
| <math>\mu = \frac{1}{\epsilon}</math>
 
| <math>\mu = \frac{1}{\epsilon}</math>
 
| <math>\mu</math>
 
| <math>\mu</math>
 
| <math>\mu = \frac{\mu/\rho}{\rho}</math>
 
| <math>\mu = \frac{\mu/\rho}{\rho}</math>
| <math>\mu = \frac{\rho N_a}{m_a} 2 r_e \lambda f_2</math>
+
| <math>\mu = \frac{\rho N_a}{M_a} 2 r_e \lambda f_2</math>
| <math>\mu = \frac{\rho N_a}{m_a} \sigma</math>
+
| <math>\mu = \frac{\rho N_a}{M_a} \sigma</math>
| <math>\mu = \frac{4 \pi M_a}{ \lambda m_a } \beta</math>
+
| <math>\mu = \frac{4 \pi }{ \lambda } \beta</math>
| <math>\mu = \frac{2 M_a \lambda}{m_a } \mathrm{Im}(\mathrm{SLD})</math>
+
| <math>\mu = 2 \lambda\mathrm{Im}(\mathrm{SLD})</math>
 
|-
 
|-
 
| <math>\frac{\mu}{\rho} = \frac{1}{\rho\epsilon}</math>
 
| <math>\frac{\mu}{\rho} = \frac{1}{\rho\epsilon}</math>
 
| <math>\frac{\mu}{\rho} = \mu/\rho</math>
 
| <math>\frac{\mu}{\rho} = \mu/\rho</math>
 
| <math>\frac{\mu}{\rho}</math>
 
| <math>\frac{\mu}{\rho}</math>
| <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} 2 r_e \lambda f_2</math>
+
| <math>\frac{\mu}{\rho} = \frac{N_a}{M_a} 2 r_e \lambda f_2</math>
| <math>\frac{\mu}{\rho} = \frac{N_a}{m_a} \sigma</math>
+
| <math>\frac{\mu}{\rho} = \frac{N_a}{M_a} \sigma</math>
| <math>\frac{\mu}{\rho} = \frac{4 \pi M_a}{ \rho \lambda m_a } \beta</math>
+
| <math>\frac{\mu}{\rho} = \frac{4 \pi}{ \rho \lambda } \beta</math>
| <math>\frac{\mu}{\rho} = \frac{2 M_a \lambda}{\rho m_a } \mathrm{Im}(\mathrm{SLD})</math>
+
| <math>\frac{\mu}{\rho} = \frac{2 \lambda}{\rho } \mathrm{Im}(\mathrm{SLD})</math>
 
|-
 
|-
| <math>f_2 = \frac{m_a }{\rho N_a 2 r_e \lambda  \epsilon} </math>
+
| <math>f_2 = \frac{M_a }{\rho N_a 2 r_e \lambda  \epsilon} </math>
| <math>f_2 = \frac{m_a }{\rho N_a 2 r_e \lambda} \mu </math>
+
| <math>f_2 = \frac{M_a }{\rho N_a 2 r_e \lambda} \mu </math>
| <math>f_2 = \frac{m_a }{ N_a 2 r_e \lambda} \frac{\mu}{\rho} </math>
+
| <math>f_2 = \frac{M_a }{ N_a 2 r_e \lambda} \frac{\mu}{\rho} </math>
 
| <math>f_2</math>
 
| <math>f_2</math>
 
| <math>f_2 = \frac{\sigma}{2 r_e \lambda}</math>
 
| <math>f_2 = \frac{\sigma}{2 r_e \lambda}</math>
Line 70: Line 70:
 
| <math>f_2 = \frac{M_a}{\rho N_a r_e } \mathrm{Im}(\mathrm{SLD})</math>
 
| <math>f_2 = \frac{M_a}{\rho N_a r_e } \mathrm{Im}(\mathrm{SLD})</math>
 
|-
 
|-
| <math>\sigma = \frac{m_a}{\rho N_a \epsilon} </math>
+
| <math>\sigma = \frac{M_a}{\rho N_a \epsilon} </math>
| <math>\sigma = \frac{m_a}{\rho N_a} \mu</math>
+
| <math>\sigma = \frac{M_a}{\rho N_a} \mu</math>
| <math>\sigma = \frac{m_a}{N_a} \frac{\mu}{\rho}</math>
+
| <math>\sigma = \frac{M_a}{N_a} \frac{\mu}{\rho}</math>
 
| <math>\sigma = 2 r_e \lambda f_2</math>
 
| <math>\sigma = 2 r_e \lambda f_2</math>
 
| <math>\sigma</math>
 
| <math>\sigma</math>
Line 78: Line 78:
 
| <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math>
 
| <math>\sigma = \frac{2 \lambda M_a}{\rho N_a}\mathrm{Im}(\mathrm{SLD})</math>
 
|-
 
|-
| <math>\beta = \frac{ \lambda m_a }{4 \pi M_a \epsilon}</math>
+
| <math>\beta = \frac{ \lambda }{4 \pi \epsilon}</math>
| <math>\beta = \frac{ \lambda m_a }{4 \pi M_a} \mu</math>
+
| <math>\beta = \frac{ \lambda }{4 \pi } \mu</math>
| <math>\beta = \frac{ \rho \lambda m_a }{4 \pi M_a} \frac{\mu}{\rho}</math>
+
| <math>\beta = \frac{ \rho \lambda }{4 \pi } \frac{\mu}{\rho}</math>
 
| <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math>
 
| <math>\beta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_2</math>
 
| <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math>
 
| <math>\beta = \frac{ \rho N_a \lambda }{4 \pi M_a} \sigma</math>
Line 86: Line 86:
 
| <math>\beta = \frac{\lambda^2}{2 \pi} \mathrm{Im}(\mathrm{SLD})</math>
 
| <math>\beta = \frac{\lambda^2}{2 \pi} \mathrm{Im}(\mathrm{SLD})</math>
 
|-
 
|-
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{m_a }{2 M_a \lambda \epsilon} </math>
+
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{1 }{2 \lambda \epsilon} </math>
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{m_a }{2 M_a \lambda} \mu</math>
+
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{1}{2 \lambda} \mu</math>
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho m_a }{2 M_a \lambda} \frac{\mu}{\rho}</math>
+
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho }{2 \lambda} \frac{\mu}{\rho}</math>
 
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a r_e }{M_a} f_2</math>
 
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a r_e }{M_a} f_2</math>
 
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a}{2 \lambda M_a}\sigma</math>
 
| <math>\mathrm{Im}(\mathrm{SLD}) = \frac{\rho N_a}{2 \lambda M_a}\sigma</math>

Revision as of 10:35, 7 June 2014

The absorption length or attenuation length in x-ray scattering is the distance over which the x-ray beam is absorbed. By convention, the absorption length ϵ is defined as the distance into a material where the beam flux has dropped to 1/e of its incident flux.

Absorption

The absorption follows a simple Beer-Lambert law:

The attenuation coefficient (or absorption coefficient) is simply the inverse of the absorption length;

Calculating

The absorption length arises from the imaginary part of the atomic scattering factor, f2. It is closely related to the absorption cross-section, and the mass absorption coefficient. Specifically, the atomic photoabsorption cross-section can be computed via:

Where λ is the x-ray wavelength, and re is the classical electron radius. The attenuation coefficient is given by:

where ρ is density, Na is the Avogadro constant, and ma is the atomic molar mass. Note that the mass attenuation coefficient is simply .

Related forms

As can be seen, there are many related quantities which express the material's absorption:

  • Absorption length , the distance over which the intensity falls to 1/e.
  • Attenuation coefficient , the characteristic inverse-distance for attenuation.
  • Mass attenuation coefficient , the density-scaled attenuation.
  • Absorptive atomic scattering factor , the intrinsic dissipative interaction of the material.
  • Atomic photoabsorption cross-section , the cross-section ('effective size') of the atom's x-ray absorption (capture) efficiency.
  • Imaginary refractive index , the resonant component of the refractive index.
  • Imaginary Scattering Length Density , the absorptive component of the scattering contrast.

See Also