Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(In-plane only)
Line 51: Line 51:
 
If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and:
 
If <math>\scriptstyle \alpha_f = 0 </math> (and <math>\scriptstyle \alpha_f ^{\prime} = 0</math>), then <math>\scriptstyle q_z = 0 </math>, <math>\scriptstyle 2 \theta_s = \theta_f </math>, and:
 
:<math>
 
:<math>
q = k \sin \theta_f
+
\begin{alignat}{2}
 +
q & = 2 k \sin \left( \theta_f /2 \right) \\
 +
    & = 2 k \sqrt{ \frac{1- \cos(\theta_f)}{2} } \\
 +
    & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{1}{\sqrt{1+(x/d)^2}}  \right) } \\
 +
    & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{d}{\sqrt{d^2+x^2}} \right) }
 +
\end{alignat}
 +
</math>
 +
The other component can be thought of in terms of the sides of a right-triangle with angle <math>\scriptstyle \theta_f = 0 </math>:
 +
:<math>
 +
\begin{alignat}{2}
 +
q_x & = q \cos ( \theta_f /2 ) \\
 +
    & = 2k \sin(\theta_f /2 ) \cos ( \theta_f /2 ) \\
 +
    & = k \sin(\theta_f)\\
 +
q_y & = - q \sin ( \theta_f /2 ) \\
 +
    & = - 2k \sin(\theta_f /2 ) \sin ( \theta_f /2 ) \\
 +
    & = - k \left( 1 - \cos \theta_f \right) \\
 +
    & = k \left( \cos \theta_f - 1 \right) \\
 +
\end{alignat}
 +
</math>
 +
Summarizing:
 +
:<math>
 +
\mathbf{q} = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \\ \cos \theta_f - 1 \\ 0 \end{bmatrix}
 +
</math>
 +
 
 +
==Out-of-plane only==
 +
If <math>\scriptstyle \theta_f = 0 </math>, then <math>\scriptstyle q_x = 0 </math>, <math>\scriptstyle \alpha_f^{\prime} = \alpha_f = 2 \theta_s </math>, and:
 +
:<math>
 +
\begin{alignat}{2}
 +
q & = 2 k \sin \left( \alpha_f /2 \right) \\
 +
    & = 2 k \sqrt{ \frac{1- \cos(\theta_f)}{2} } \\
 +
    & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{1}{\sqrt{1+(x/d)^2}}  \right) } \\
 +
    & = 2 k \sqrt{ \frac{1}{2} \left( 1 - \frac{d}{\sqrt{d^2+x^2}} \right) }
 +
\end{alignat}
 
</math>
 
</math>
  

Revision as of 10:57, 30 December 2015

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is:

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

Components

The momentum transfer components are:

Check

As a check of these results, consider:

Where we used:

And, we further note that:

Continuing: