Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(Check)
(Check)
Line 119: Line 119:
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
 
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
+
\left( \frac{q}{k} \right)^2
 +
     & = \frac{4}{2} \left( 1-\cos 2\theta_s \right)  \\
 +
    & = 2 \left( 1-\frac{1}{\sqrt{1+\left( \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right) ^2}} \right)  \\
 +
    & = 2 \left( 1-\frac{1}{\sqrt{1+\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } }} \right)  \\
 +
    & = 2-\frac{2}{\sqrt{1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } }}  \\
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>
 +
\begin{alignat}{2}
 +
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
 +
    & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 +
\left( \frac{q}{k} \right)^2
 +
    & = \sin^2 \theta_f \cos^2 \alpha_f + \cos^2 \theta_f \cos^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 + \sin^2 \alpha_f \\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 11:28, 30 December 2015

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is defined by a right-triangle with base d and height :

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

The components are:

Summarizing:

Components

The momentum transfer components are:

In vector form:

Check

As a check of these results, consider:

And:

Check 2

As a check of these results, consider:

Where we used:

And, we further note that:

cont

Continuing: