|
|
Line 180: |
Line 180: |
| ==See Also== | | ==See Also== |
| * [[Lattices]] | | * [[Lattices]] |
| + | * K. N. Trueblood, H.-B. Bürgi, H. Burzlaff, J. D. Dunitz, C. M. Gramaccioli, H. H. Schulz, U. Shmueli and S. C. Abrahams [https://scripts.iucr.org/cgi-bin/paper?S0108767396005697 Atomic Dispacement Parameter Nomenclature. Report of a Subcommittee on Atomic Displacement Parameter Nomenclature] ''Acta Cryst'' '''1996''', A52, 770-781. [https://doi.org/10.1107/S0108767396005697 doi: 10.1107/S0108767396005697] |
Revision as of 09:29, 14 November 2022
Example of the
BCC unit cell.
The unit cell is the basic building block of a crystal lattice (whether an atomic crystal or a nanoscale superlattice). Crystalline materials have a periodic structure, with the unit cell being the minimal volume necessary to fully describe the repeating structure. There are a finite number of possible symmetries for the repeating unit cell.
A unit cell can be defined by three vectors that lie along the edges of the enclosing parallelepped. We denote the vectors as , , and ; alternately the unit cell can be described by the lengths of these vectors (, , ), and the angles between them:
- , the angle between and
- , the angle between and
- , the angle between and
Mathematical description
Vectors
Relations
Volume
If a, b, and c are the parallelepiped edge lengths, and α, β, and γ are the internal angles between the edges, the volume is
The volume of a unit cell with all edge-length equal to unity is:
Angles
- is the angle between and
- is the angle between and
- is the angle between and
Unit cell definition using parallelepiped with lengths
a,
b,
c and angles between the sides given by α,β,γ (from Wikipedia
fractional coordinates).
Reciprocal vectors
The repeating structure of a unit cell creates peaks in reciprocal space. In particular, we observe maxima (constructive interference) when:
Where , , and are integers. We define reciprocal-space vectors:
And we can then express the momentum transfer () in terms of these reciprocal vectors:
Combining with the three Laue equations yields:
Where is a vector that defines the position of Bragg reflection for the reciprocal-lattice.
Examples
Cubic
Since , , and:
And in reciprocal-space:
So:
And:
Hexagonal
Since and , , and:
And in reciprocal-space:
So:
See Also