Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(cont)
(Components (distances))
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
In transmission-[[SAXS]] ([[TSAXS]]), the x-ray beam hits the sample at normal incidence, and passes directly through without [[refraction]]. TSAXS is normally considered in terms of the one-dimensional [[momentum transfer]] (''q''); however the full 3D form of the ''q''-vector is necessary when considering [[scattering]] from anisotropic materials. The ''q''-vector in fact has three components:
 
In transmission-[[SAXS]] ([[TSAXS]]), the x-ray beam hits the sample at normal incidence, and passes directly through without [[refraction]]. TSAXS is normally considered in terms of the one-dimensional [[momentum transfer]] (''q''); however the full 3D form of the ''q''-vector is necessary when considering [[scattering]] from anisotropic materials. The ''q''-vector in fact has three components:
 
:<math>
 
:<math>
\mathbf{q} = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix}
+
\begin{alignat}{2}
 +
\mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\
 +
    & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f  \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix}
 +
\end{alignat}
 
</math>
 
</math>
 
This vector is always on the surface of the [[Ewald sphere]]. Consider that the [[x-ray]] beam points along +''y'', so that on the [[detector]], the horizontal is ''x'', and the vertical is ''z''. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position <math>\scriptstyle (x,z) </math>. The scattering angles are then:
 
This vector is always on the surface of the [[Ewald sphere]]. Consider that the [[x-ray]] beam points along +''y'', so that on the [[detector]], the horizontal is ''x'', and the vertical is ''z''. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position <math>\scriptstyle (x,z) </math>. The scattering angles are then:
Line 43: Line 46:
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
 
     & = \pm \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) }
+
     & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) } \\
 +
    & = \sqrt{2} \frac{2 \pi}{\lambda} \sqrt{ 1 - \frac{d}{\sqrt{x^2+d^2+z^2}}  }
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Line 99: Line 103:
 
</math>
 
</math>
  
==Components==
+
==Components (angular)==
The [[momentum transfer]] components are:
+
For arbitrary 3D scattering vectors, the [[momentum transfer]] components are:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 113: Line 117:
 
</math>
 
</math>
  
===Check===
+
===Total magnitude===
As a check of these results, consider:
+
Note that this provides a simple expression for ''q'' total:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 120: Line 124:
 
     & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 
     & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 
\left( \frac{q}{k} \right)^2
 
\left( \frac{q}{k} \right)^2
     & = (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 \\
+
     & = \sin^2 \theta_f \cos^2 \alpha_f + \cos^2 \theta_f \cos^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 + \sin^2 \alpha_f \\
    & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\
+
     & = \cos^2 \alpha_f (\sin^2 \theta_f + \cos^2 \theta_f)  +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\
     & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\
+
     & = \cos^2 \alpha_f (1)  +\sin^2 \alpha_f -2 \cos \theta_f \cos \alpha_f + 1 \\
     & = \frac{x^2}{d^2+x^2}  \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }  \\
+
     & = 2 -2 \cos \theta_f \cos \alpha_f \\
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }
+
q & = \sqrt{2}k \sqrt{ 1 - \cos \theta_f \cos \alpha_f } \\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Where we used:
+
 
::<math>
+
====Check====
 +
As a check of these results, consider:
 +
:<math>
 +
\begin{alignat}{2}
 +
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right) \\
 +
    & = \frac{4 \pi}{\lambda} \sqrt{ \frac{1-\cos 2\theta_s }{2} } \\
 +
\left( \frac{q}{k} \right)^2
 +
    & = \frac{4}{2} \left( 1-\cos 2\theta_s \right)  \\
 +
    & = 2 \left( 1-\frac{1}{\sqrt{1+\left( \sqrt{\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } } \right) ^2}} \right)  \\
 +
    & = 2 \left( 1-\frac{1}{\sqrt{1+\tan^2 \theta_f + \frac{ \tan^2 \alpha_f }{ \cos^2 \theta_f } }} \right)  \\
 +
    & = 2-\frac{2}{\sqrt{1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } }}  \\
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\
+
    & \left( 1+\frac{\sin^2 \theta_f}{\cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2}  \\
\sin \theta_f & = \sin( \arctan [x/d] ) \\
+
    = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f}+\frac{\cos^2 \alpha_f \sin^2 \theta_f}{\cos^2 \alpha_f \cos^2 \theta_f} + \frac{ \sin^2 \alpha_f }{ \cos^2 \alpha_f \cos^2 \theta_f } \right) ^{-1/2}   \\
& = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\
+
    = & \left( \frac{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f}{\cos^2 \alpha_f \cos^2 \theta_f} \right) ^{-1/2}  \\
     & = \frac{x}{\sqrt{d^2+x^2}}
+
    = & \left( \frac{\cos^2 \theta_f \cos^2 \alpha_f }{\cos^2 \alpha_f \cos^2 \theta_f + \cos^2 \alpha_f \sin^2 \theta_f + \sin^2 \alpha_f} \right) ^{+1/2}   \\
 +
     = & \frac{\cos \theta_f \cos \alpha_f }{ \sqrt{ \cos^2 \alpha_f (\cos^2 \theta_f + \sin^2 \theta_f) + \sin^2 \alpha_f }}   \\
 +
    = & \cos \theta_f \cos \alpha_f
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
  
And, we further note that:
+
==Components (distances)==
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f  \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right)  \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\
 +
 
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}}  \\
 +
\frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
 +
\frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\
 +
 
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}}  \\
 +
\frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
 +
\frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\
 +
 
 +
\end{alignat}
 +
</math>
 +
Note that <math>\cos \theta_f = d/\sqrt{d^2+x^2}</math>, and <math>\cos^2 \theta_f = d^2/(d^2+x^2)</math> so:
 
::<math>
 
::<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
\cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
+
\frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }}
\cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\
+
    & = \frac{1}{\sqrt{d^2+z^2 \left( d^2/(d^2+x^2) \right) }} \\
    & = \frac{d^2}{\sqrt{d^2+x^2}}
+
    & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2)/(d^2+x^2)  }} \\
 +
    & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 }} \\
 +
 
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>
 +
\begin{alignat}{2}
 +
\mathbf{q}
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }}  \\
 +
\frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }} - 1 \\
 +
\frac{z \left( d/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2  }} \end{bmatrix} \\
 +
 
 +
& = \frac{2 \pi}{\lambda} \begin{bmatrix}
 +
\frac{x}{ \sqrt{x^2 + d^2 + z^2  }}  \\
 +
\frac{d }{\sqrt{x^2 + d^2 + z^2  }} - 1 \\
 +
\frac{z }{\sqrt{x^2 + d^2 + z^2  }} \end{bmatrix} \\
 +
 
 +
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
====cont====
+
 
Continuing:
+
===Total magnitude===
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 
\left( \frac{q}{k} \right)^2
 
\left( \frac{q}{k} \right)^2
     & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\
+
     & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 } }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 \\
    & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
+
     & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2   }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\
     & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2}  + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\
+
     & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2   \right) + z^2 }{x^2 + d^2 + z^2} \\
    & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2+ \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
+
     & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
     & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2+ \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
+
     & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
     & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2} \\
+
     & = 2 \left( 1  - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right) \\
     & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2} \\
+
q & = \sqrt{2}k \sqrt{1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} }
     & = ? \\
 
    & = ? \\
 
    & = \frac{\sqrt{d^2+x^2+z^2} - d}{2 \sqrt{d^2+x^2+z^2}} \\
 
    & = \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right)
 
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Latest revision as of 13:11, 13 January 2016

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is defined by a right-triangle with base d and height :

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

The components are:

Summarizing:

Components (angular)

For arbitrary 3D scattering vectors, the momentum transfer components are:

In vector form:

Total magnitude

Note that this provides a simple expression for q total:

Check

As a check of these results, consider:

And:

Components (distances)

Note that , and so:

And:

Total magnitude