Difference between revisions of "Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(Check 2)
(Alternate check)
Line 142: Line 142:
 
</math>
 
</math>
 
And:
 
And:
 
====Alternate check====
 
As a check of these results, consider:
 
:<math>
 
\begin{alignat}{2}
 
q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 } \\
 
    & = \frac{2 \pi}{\lambda} \sqrt{ \sin^2 \theta_f \cos^2 \alpha_f + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \sin^2 \alpha_f } \\
 
\left( \frac{q}{k} \right)^2
 
    & = (\sin \theta_f)^2 (\cos \alpha_f)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + (\sin \alpha_f)^2 \\
 
    & = \left(\frac{x/d}{\sqrt{1+(x/d)^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f /d }{\sqrt{1+(z \cos \theta_f /d)^2}} \right)^2 \\
 
    & = \left(\frac{x}{\sqrt{d^2+x^2}} \right)^2 \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \left( \frac{z \cos \theta_f }{\sqrt{d^2+z^2 \cos^2 \theta_f }} \right)^2 \\
 
    & = \frac{x^2}{d^2+x^2}  \left(\cos \alpha_f \right)^2 + \left ( \cos \theta_f \cos \alpha_f - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }  \\
 
    & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \cos \theta_f \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 \cos^2 \theta_f }{d^2+z^2 \cos^2 \theta_f }
 
\end{alignat}
 
</math>
 
Where we used:
 
::<math>
 
\begin{alignat}{2}
 
\sin( \arctan[u]) & = \frac{u}{\sqrt{1+u^2}} \\
 
\sin \theta_f & = \sin( \arctan [x/d] ) \\
 
& = \frac{x/d}{\sqrt{1 + (x/d)^2}} \\
 
    & = \frac{x}{\sqrt{d^2+x^2}}
 
\end{alignat}
 
</math>
 
 
And, we further note that:
 
::<math>
 
\begin{alignat}{2}
 
\cos( \arctan[u]) & = \frac{1}{\sqrt{1+u^2}} \\
 
\cos \theta_f & = \frac{1}{\sqrt{1 + (x/d)^2}} \\
 
    & = \frac{d^2}{\sqrt{d^2+x^2}}
 
\end{alignat}
 
</math>
 
Continuing:
 
:<math>
 
\begin{alignat}{2}
 
\left( \frac{q}{k} \right)^2
 
    & = \frac{x^2}{d^2+x^2}  \frac{d^4}{d^2+z^2 \cos^2 \theta_f} + \left ( \frac{d^2}{\sqrt{d^2+x^2}} \frac{d^2}{\sqrt{d^2+z^2 \cos^2 \theta_f}} - 1 \right )^2 + \frac{z^2 }{d^2+z^2 \cos^2 \theta_f } \frac{d^4}{d^2+x^2} \\
 
    & = d^4\frac{x^2+z^2}{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}  + \left ( \frac{d^4}{\sqrt{(d^2+x^2)(d^2+z^2 \cos^2 \theta_f)}} - 1 \right )^2 \\
 
    & = \frac{d^4x^2+d^4z^2}{d^4+d^2x^2+d^4z^2}  + \left ( \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} - 1 \right )^2 \\
 
    & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \left ( \frac{d^8}{d^4+d^2x^2+d^4z^2} -2 \frac{d^4}{\sqrt{d^4+d^2x^2+d^4z^2}} + 1 \right ) \\
 
    & = \frac{d^2x^2+d^2z^2}{d^2+x^2+d^2z^2}  + \frac{d^6}{d^2+x^2+d^2z^2} -2 \frac{d^3}{\sqrt{d^2+x^2+d^2z^2}} + 1 \\
 
    & = \frac{d^2x^2+d^2z^2 + d^6 -2d^3\sqrt{d^2+x^2+d^2z^2} + d^2+x^2+d^2z^2}{d^2+x^2+d^2z^2}  \\
 
    & = \frac{d^6 + d^2 + d^2x^2 + x^2 + 2d^2z^2 -2d^3\sqrt{d^2+x^2+d^2z^2}}{d^2+x^2+d^2z^2}  \\
 
    & = ? \\
 
    & = ? \\
 
    & = \frac{\sqrt{d^2+x^2+z^2} - d}{2 \sqrt{d^2+x^2+z^2}} \\
 
    & = \frac{1}{2}\left(1 - \frac{d}{\sqrt{d^2+x^2+z^2}} \right) \\
 
q & = \frac{4 \pi}{\lambda} \sin \left( \theta_s \right)
 
\end{alignat}
 
</math>
 

Revision as of 12:37, 30 December 2015

In transmission-SAXS (TSAXS), the x-ray beam hits the sample at normal incidence, and passes directly through without refraction. TSAXS is normally considered in terms of the one-dimensional momentum transfer (q); however the full 3D form of the q-vector is necessary when considering scattering from anisotropic materials. The q-vector in fact has three components:

This vector is always on the surface of the Ewald sphere. Consider that the x-ray beam points along +y, so that on the detector, the horizontal is x, and the vertical is z. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position . The scattering angles are then:

where is the sample-detector distance, is the out-of-plane component (angle w.r.t. to y-axis, rotation about x-axis), and is the in-plane component (rotation about z-axis). The alternate angle, , is the elevation angle in the plane defined by .

Total scattering

The full scattering angle is defined by a right-triangle with base d and height :

The total momentum transfer is:

Given that:

We can also write:

Where we take for granted that q must be positive.

In-plane only

If (and ), then , , and:

The other component can be thought of in terms of the sides of a right-triangle with angle :

Summarizing:

Out-of-plane only

If , then , , and:

The components are:

Summarizing:

Components

The momentum transfer components are:

In vector form:

Total magnitude

Note that this provides a simple expression for q total:

Check

As a check of these results, consider:

And: