Difference between revisions of "Atomic scattering factors"

From GISAXS
Jump to: navigation, search
(Related forms)
(Related forms)
 
(4 intermediate revisions by the same user not shown)
Line 31: Line 31:
 
* '''Real [[refractive index]]''' <math>\delta</math>, the refractive component of the refractive index.
 
* '''Real [[refractive index]]''' <math>\delta</math>, the refractive component of the refractive index.
 
* '''Real [[Scattering Length Density]]''' <math>\mathrm{Re}(\mathrm{SLD})</math>, the primary (non-absorptive) component of the scattering contrast.
 
* '''Real [[Scattering Length Density]]''' <math>\mathrm{Re}(\mathrm{SLD})</math>, the primary (non-absorptive) component of the scattering contrast.
 +
* '''[[Electron-density distribution|Electron Density]]''' <math>\rho_e</math>, the number of electrons per unit volume.
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 39: Line 40:
 
| <math>f_1 = \frac{2 \pi M_a}{ \rho N_a r_e \lambda^2 } \delta</math>
 
| <math>f_1 = \frac{2 \pi M_a}{ \rho N_a r_e \lambda^2 } \delta</math>
 
| <math>f_1 = \frac{M_a}{\rho N_a r_e} \mathrm{Re}(\mathrm{SLD}) </math>
 
| <math>f_1 = \frac{M_a}{\rho N_a r_e} \mathrm{Re}(\mathrm{SLD}) </math>
 +
| <math> f_1 = \frac{M_a}{\rho N_a} \rho_e</math>
 
|-
 
|-
 
| <math>\theta_c = \sqrt{ \frac{ \rho N_a r_e \lambda^2 }{ \pi M_a} f_1 }</math>
 
| <math>\theta_c = \sqrt{ \frac{ \rho N_a r_e \lambda^2 }{ \pi M_a} f_1 }</math>
Line 45: Line 47:
 
| <math>\theta_c = \sqrt{ 2 \delta }</math>
 
| <math>\theta_c = \sqrt{ 2 \delta }</math>
 
| <math>\theta_c\approx \sqrt{\frac{\lambda^2 \mathrm{SLD} }{\pi}}</math>
 
| <math>\theta_c\approx \sqrt{\frac{\lambda^2 \mathrm{SLD} }{\pi}}</math>
 +
| <math>\theta_c = \sqrt{ \frac{r_e \lambda^2}{\pi} \rho_e }</math>
 
|-
 
|-
 
| <math>q_c = \sqrt{ \frac{ 16 \pi \rho N_a r_e  }{ M_a} f_1 }</math>
 
| <math>q_c = \sqrt{ \frac{ 16 \pi \rho N_a r_e  }{ M_a} f_1 }</math>
Line 51: Line 54:
 
| <math>q_c \approx \frac{4\pi}{\lambda}\sqrt{ 2\delta }</math>
 
| <math>q_c \approx \frac{4\pi}{\lambda}\sqrt{ 2\delta }</math>
 
| <math>q_c = \sqrt{ 16 \pi \mathrm{SLD} }</math>
 
| <math>q_c = \sqrt{ 16 \pi \mathrm{SLD} }</math>
 +
| <math>q_c = 4 \sqrt{ \pi r_e \rho_e}</math>
 
|-
 
|-
 
| <math>\delta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_1</math>
 
| <math>\delta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_1</math>
Line 57: Line 61:
 
| <math>\delta</math>
 
| <math>\delta</math>
 
| <math>\delta \approx \frac{\lambda^2}{2 \pi}\mathrm{Re}(\mathrm{SLD})</math>
 
| <math>\delta \approx \frac{\lambda^2}{2 \pi}\mathrm{Re}(\mathrm{SLD})</math>
 +
| <math>\delta = \frac{\lambda^2 r_e}{2 \pi} \rho_e</math>
 
|-
 
|-
 
| <math>\mathrm{Re}(\mathrm{SLD}) = \frac{\rho N_a r_e}{M_a} f_1</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) = \frac{\rho N_a r_e}{M_a} f_1</math>
Line 63: Line 68:
 
| <math>\mathrm{Re}(\mathrm{SLD}) \approx \frac{2 \pi}{\lambda^2}\delta</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) \approx \frac{2 \pi}{\lambda^2}\delta</math>
 
| <math>\mathrm{Re}(\mathrm{SLD})</math>
 
| <math>\mathrm{Re}(\mathrm{SLD})</math>
 +
| <math>\mathrm{Re}(\mathrm{SLD}) = r_e \rho_e</math>
 +
|-
 +
| <math>\rho_e = \frac{\rho N_a}{M_a} f_1</math>
 +
| <math>\rho_e = \frac{\pi}{r_e \lambda^2} \theta_c^2</math>
 +
| <math>\rho_e = \frac{q_c^2}{ 16 \pi r_e  }</math>
 +
| <math>\rho_e = \frac{2 \pi}{r_e \lambda^2} \delta</math>
 +
| <math>\rho_e = \frac{ \mathrm{Re}(\mathrm{SLD}) }{r_e}</math>
 +
| <math>\rho_e</math>
 
|}
 
|}
  
Line 69: Line 82:
  
 
==See Also==
 
==See Also==
 +
* [[Atomic Form Factor]]
 
* [http://henke.lbl.gov/optical_constants/asf.html Periodic table of atomic scattering factors]: Useful tool for looking up the values for any element.
 
* [http://henke.lbl.gov/optical_constants/asf.html Periodic table of atomic scattering factors]: Useful tool for looking up the values for any element.
 
* [https://subversion.xor.aps.anl.gov/trac/pyFprime/ APS Python code for calculating ''f'']
 
* [https://subversion.xor.aps.anl.gov/trac/pyFprime/ APS Python code for calculating ''f'']
 
* [http://reference.iucr.org/dictionary/Atomic_scattering_factor Online Dictionary of Crystallography: Atomic scattering factor]
 
* [http://reference.iucr.org/dictionary/Atomic_scattering_factor Online Dictionary of Crystallography: Atomic scattering factor]

Latest revision as of 14:43, 28 January 2015

The atomic scattering factors are measures of the scattering power of individual atoms. Each element has a different atomic scattering factor, which represents how strongly x-rays interact with those atoms.

The scattering factor has two components: f1 and f2, which describe the dispersive and absorptive components. In other words, f2 describes how strongly the material absorbs the radiation, while f1 describes the non-absorptive interaction (which leads to refraction).

Elemental dependence

Because x-ray interactions occur with an atom's electron cloud, the scattering factors increase with number of electrons, and thus with atomic number (Z). However, the relationship between f and Z is not monotonic, owing to resonant (absorption) edges.

Elements-f1.pngElements-f2.png

Energy dependence

The atomic scattering factors vary with x-ray wavelength. In particular, a given element will have resonant edges at certain energies, where the absorption increases markedly. The dispersive component f1 will also vary rapidly in the vicinity of an absorption edge (c.f. Kramers-Kronig relations). In general, absorption decreases with increasing energy (i.e. high-energy x-rays can penetrate more efficiently through materials).

Examples

silicon

Atomic scattering factors (f1 and f2).

gold

Atomic scattering factors (f1 and f2).

Elemental/Energy dependence

Elements2D-f1.pngElements2D-f2.png

Related forms

There are a variety of quantities related to the material's x-ray interaction strength:


See also absorption length for a comparison of the quantities related to f2.

See Also