Difference between revisions of "Atomic scattering factors"

From GISAXS
Jump to: navigation, search
(Related forms)
(Related forms)
Line 35: Line 35:
 
|-
 
|-
 
| <math>f_1</math>
 
| <math>f_1</math>
| <math>f_1 = \frac{ \pi}{ n_a r_e \lambda^2 } \theta_c^2</math>
+
| <math>f_1 = \frac{ \pi M_a}{ \rho N_a r_e \lambda^2 } \theta_c^2</math>
|
 
| <math>f_1 = \frac{2 \pi}{ n_a r_e \lambda^2 } \delta</math>
 
 
|  
 
|  
 +
| <math>f_1 = \frac{2 \pi M_a}{ \rho N_a r_e \lambda^2 } \delta</math>
 +
| <math>f_1 \approx \frac{M_a}{\rho N_a r_e} \mathrm{Re}(\mathrm{SLD}) </math>
 
|-
 
|-
| <math>\theta_c = \sqrt{ \frac{ n_a r_e \lambda^2 }{ \pi} f_1 }</math>
+
| <math>\theta_c = \sqrt{ \frac{ \rho N_a r_e \lambda^2 }{ \pi M_a} f_1 }</math>
 
| <math>\theta_c</math>
 
| <math>\theta_c</math>
 
| <math>\theta_c \approx \frac{\lambda}{4 \pi} q_c </math>
 
| <math>\theta_c \approx \frac{\lambda}{4 \pi} q_c </math>
Line 52: Line 52:
 
| <math>q_c = \sqrt{ 16 \pi \mathrm{SLD} }</math>
 
| <math>q_c = \sqrt{ 16 \pi \mathrm{SLD} }</math>
 
|-
 
|-
| <math>\delta = \frac{ n_a r_e \lambda^2 }{2 \pi} f_1</math>
+
| <math>\delta = \frac{ \rho N_a r_e \lambda^2 }{2 \pi M_a} f_1</math>
 
| <math>\delta = \frac{\theta_c^2}{2}</math>
 
| <math>\delta = \frac{\theta_c^2}{2}</math>
 
|  
 
|  
Line 58: Line 58:
 
|  
 
|  
 
|-
 
|-
| <math>\mathrm{Re}(\mathrm{SLD}) \approx n_a r_e f_1</math>
+
| <math>\mathrm{Re}(\mathrm{SLD}) \approx \frac{\rho N_a r_e}{M_a} f_1</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) \approx \frac{\pi}{\lambda^2}\theta_c^2</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) \approx \frac{\pi}{\lambda^2}\theta_c^2</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) = \frac{q_c^2}{16\pi}</math>
 
| <math>\mathrm{Re}(\mathrm{SLD}) = \frac{q_c^2}{16\pi}</math>

Revision as of 10:39, 7 June 2014

The atomic scattering factors are measures of the scattering power of individual atoms. Each element has a different atomic scattering factor, which represents how strongly x-rays interact with those atoms.

The scattering factor has two components: f1 and f2, which describe the dispersive and absorptive components. In other words, f2 describes how strongly the material absorbs the radiation, while f1 describes the non-absorptive interaction (which leads to refraction).

Elemental dependence

Because x-ray interactions occur with an atom's electron cloud, the scattering factors increase with number of electrons, and thus with atomic number (Z). However, the relationship between f and Z is not monotonic, owing to resonant (absorption) edges.

Elements-f1.pngElements-f2.png

Energy dependence

The atomic scattering factors vary with x-ray wavelength. In particular, a given element will have resonant edges at certain energies, where the absorption increases markedly. The dispersive component f1 will also vary rapidly in the vicinity of an absorption edge (c.f. Kramers-Kronig relations). In general, absorption decreases with increasing energy (i.e. high-energy x-rays can penetrate more efficiently through materials).

Examples

silicon

Atomic scattering factors (f1 and f2).

gold

Atomic scattering factors (f1 and f2).

Elemental/Energy dependence

Elements2D-f1.pngElements2D-f2.png

Related forms

There are a variety of quantities related to the material's x-ray interaction strength:


See also absorption length for a comparison of the quantities related to f2.

See Also